I am trying to identify the type of noise based on that article:
Model selection with Probabilistic (PCA) and Factor Analysis (FA)
I am using scikit-learn-0.14.1.win32-py2.7 on win8 64bit I know that it refers on version 0.15, however at the version 0.14 documentation it mentions that the score method is available for PCA so I guess it should normally work:
sklearn.decomposition.ProbabilisticPCA
The problem is that no matter which PCA I will use for the *cross_val_score*, I always get a type error message saying that the estimator PCA does not have a score method:
*TypeError: If no scoring is specified, the estimator passed should have a 'score' method. The estimator PCA(copy=True, n_components=None, whiten=False) does not.*
Any ideas why is that happening?
Many thanks in advance
Christos
X has 1000 samples of 40 features
here is a portion of the code:
import numpy as np
import csv
from scipy import linalg
from sklearn.decomposition import PCA, FactorAnalysis
from sklearn.cross_validation import cross_val_score
from sklearn.grid_search import GridSearchCV
from sklearn.covariance import ShrunkCovariance, LedoitWolf
#read in the training data
train_path = '<train data path>/train.csv'
reader = csv.reader(open(train_path,"rb"),delimiter=',')
train = list(reader)
X = np.array(train).astype('float')
n_samples = 1000
n_features = 40
n_components = np.arange(0, n_features, 4)
def compute_scores(X):
pca = PCA()
pca_scores = []
for n in n_components:
pca.n_components = n
pca_scores.append(np.mean(cross_val_score(pca, X, n_jobs=1)))
return pca_scores
pca_scores = compute_scores(X)
n_components_pca = n_components[np.argmax(pca_scores)]