198
votes

I want to create a new column in a pandas data frame by applying a function to two existing columns. Following this answer I've been able to create a new column when I only need one column as an argument:

import pandas as pd
df = pd.DataFrame({"A": [10,20,30], "B": [20, 30, 10]})

def fx(x):
    return x * x

print(df)
df['newcolumn'] = df.A.apply(fx)
print(df)

However, I cannot figure out how to do the same thing when the function requires multiple arguments. For example, how do I create a new column by passing column A and column B to the function below?

def fxy(x, y):
    return x * y
5

5 Answers

167
votes

Alternatively, you can use numpy underlying function:

>>> import numpy as np
>>> df = pd.DataFrame({"A": [10,20,30], "B": [20, 30, 10]})
>>> df['new_column'] = np.multiply(df['A'], df['B'])
>>> df
    A   B  new_column
0  10  20         200
1  20  30         600
2  30  10         300

or vectorize arbitrary function in general case:

>>> def fx(x, y):
...     return x*y
...
>>> df['new_column'] = np.vectorize(fx)(df['A'], df['B'])
>>> df
    A   B  new_column
0  10  20         200
1  20  30         600
2  30  10         300
283
votes

You can go with @greenAfrican example, if it's possible for you to rewrite your function. But if you don't want to rewrite your function, you can wrap it into anonymous function inside apply, like this:

>>> def fxy(x, y):
...     return x * y

>>> df['newcolumn'] = df.apply(lambda x: fxy(x['A'], x['B']), axis=1)
>>> df
    A   B  newcolumn
0  10  20        200
1  20  30        600
2  30  10        300
45
votes

This solves the problem:

df['newcolumn'] = df.A * df.B

You could also do:

def fab(row):
  return row['A'] * row['B']

df['newcolumn'] = df.apply(fab, axis=1)
38
votes

If you need to create multiple columns at once:

  1. Create the dataframe:

    import pandas as pd
    df = pd.DataFrame({"A": [10,20,30], "B": [20, 30, 10]})
    
  2. Create the function:

    def fab(row):                                                  
        return row['A'] * row['B'], row['A'] + row['B']
    
  3. Assign the new columns:

    df['newcolumn'], df['newcolumn2'] = zip(*df.apply(fab, axis=1))
    
17
votes

One more dict style clean syntax:

df["new_column"] = df.apply(lambda x: x["A"] * x["B"], axis = 1)

or,

df["new_column"] = df["A"] * df["B"]