I am a bit confused by your question. In my experience, dimensionality reduction is never really supervised... but it seems that what you want is some sort of informed feature selection, which is impossible to do before the classification is done. In other words, you cannot know which features are more informative before your classifier is trained and validated.
However, reducing the size and complexity of your data is always good, and you have various ways to do it with text data. The applicability and performance depends on the type of vectors you have (frequency counts, tfidf) and you will always have to determine the number of dimensions (components) you want in your output. The implementations in scikit-learn are mostly in the decomposition module.
The most popular method in Natural Language Processing is Singular Value Decomposition (SVD), which is at the core of Latent Semantic Analysis (LSA, also LSI). Staying with scikit-learn, you can simply apply TruncatedSVD()
on your data. A similar method is Non-negative matrix factorization, implemented in scikit-learn as NMF()
.
An increasingly popular approach uses transformation by random projections, Random Indexing. You can do this in scikit-learn with the functions in random_projection.
As someone pointed out in another answer, Latent Dirichlet Allocation is also an alternative, although it is much slower and computationally more demanding than the methods above. Besides, it is at the time of writing unavailable in scikit-learn.
If all you want is to simplify your data in order to feed it to a classifier, I would suggest SVD with n_components between 100 and 500, or random projection with n_components between 500 and 2000 (common values from the literature).
If you are interested in using the reduced dimensions as some sort of classification/clustering already (people call this topic extraction, although you are really not extracting topics, rather latent dimensions), then LDA might be better option. Beware, it is slow and it only takes pure frequency counts (no tfidf). And the number of components is a parameter that you have to determine in advance (no estimation possible).
Returning to your problem, I would make a sckit-learn pipeline with a vectorizer, dimensionality reduction options and classifier and would carry out a massive parameter search. In this way, you will see what gives you best results with the label set you have.