Below is an example of using Curve_Fit from Scipy based on a linear equation. My understanding of Curve Fit in general is that it takes a plot of random points and creates a curve to show the "best fit" to a series of data points. My question is using scipy curve_fit it returns:
"Optimal values for the parameters so that the sum of the squared error of f(xdata, *popt) - ydata is minimized".
What exactly do these two values mean in simple English? Thanks!
import numpy as np
from scipy.optimize import curve_fit
# Creating a function to model and create data
def func(x, a, b):
return a * x + b
# Generating clean data
x = np.linspace(0, 10, 100)
y = func(x, 1, 2)
# Adding noise to the data
yn = y + 0.9 * np.random.normal(size=len(x))
# Executing curve_fit on noisy data
popt, pcov = curve_fit(func, x, yn)
# popt returns the best fit values for parameters of
# the given model (func).
print(popt)