I have a weird problem with the discrete fft. I know that the Fourier Transform of a Gauss function exp(-x^2/2) is again the same Gauss function exp(-k^2/2). I tried to test that with some simple code in MatLab and FFTW but I get strange results.
First, the imaginary part of the result is not zero (in MatLab) as it should be.
Second, the absolute value of the real part is a Gauss curve but without the absolute value half of the modes have a negative coefficient. More precisely, every second mode has a coefficient that is the negative of that what it should be.
Third, the peak of the resulting Gauss curve (after taking the absolute value of the real part) is not at one but much higher. Its height is proportional to the number of points on the x-axis. However, the proportionality factor is not 1 but nearly 1/20.
Could anyone explain me what I am doing wrong?
Here is the MatLab code that I used:
function [nooutput,M] = fourier_test
Nx = 512; % number of points in x direction
Lx = 50; % width of the window containing the Gauss curve
x = linspace(-Lx/2,Lx/2,Nx); % creating an equidistant grid on the x-axis
input_1d = exp(-x.^2/2); % Gauss function as an input
input_1d_hat = fft(input_1d); % computing the discrete FFT
input_1d_hat = fftshift(input_1d_hat); % ordering the modes such that the peak is centred
plot(real(input_1d_hat), '-')
hold on
plot(imag(input_1d_hat), 'r-')