I code the Knight's tour algorithm in c++ using Backtracking method. But it seems too slow or stuck in infinite loop for n > 7 (bigger than 7 by 7 chessboard).
The question is: What is the Time complexity for this algorithm and how can I optimize it?!
The Knight's Tour problem can be stated as follows:
Given a chess board with n × n squares, find a path for the knight that visits every square exactly once.
Here is my code:
#include <iostream>
#include <iomanip>
using namespace std;
int counter = 1;
class horse {
public:
horse(int);
bool backtrack(int, int);
void print();
private:
int size;
int arr[8][8];
void mark(int &);
void unmark(int &);
bool unvisited(int &);
};
horse::horse(int s) {
int i, j;
size = s;
for (i = 0; i <= s - 1; i++)
for (j = 0; j <= s - 1; j++)
arr[i][j] = 0;
}
void horse::mark(int &val) {
val = counter;
counter++;
}
void horse::unmark(int &val) {
val = 0;
counter--;
}
void horse::print() {
cout << "\n - - - - - - - - - - - - - - - - - -\n";
for (int i = 0; i <= size - 1; i++) {
cout << "| ";
for (int j = 0; j <= size - 1; j++)
cout << setw(2) << setfill ('0') << arr[i][j] << " | ";
cout << "\n - - - - - - - - - - - - - - - - - -\n";
}
}
bool horse::backtrack(int x, int y) {
if (counter > (size * size))
return true;
if (unvisited(arr[x][y])) {
if ((x - 2 >= 0) && (y + 1 <= (size - 1))) {
mark(arr[x][y]);
if (backtrack(x - 2, y + 1))
return true;
else
unmark(arr[x][y]);
}
if ((x - 2 >= 0) && (y - 1 >= 0)) {
mark(arr[x][y]);
if (backtrack(x - 2, y - 1))
return true;
else
unmark(arr[x][y]);
}
if ((x - 1 >= 0) && (y + 2 <= (size - 1))) {
mark(arr[x][y]);
if (backtrack(x - 1, y + 2))
return true;
else
unmark(arr[x][y]);
}
if ((x - 1 >= 0) && (y - 2 >= 0)) {
mark(arr[x][y]);
if (backtrack(x - 1, y - 2))
return true;
else
unmark(arr[x][y]);
}
if ((x + 2 <= (size - 1)) && (y + 1 <= (size - 1))) {
mark(arr[x][y]);
if (backtrack(x + 2, y + 1))
return true;
else
unmark(arr[x][y]);
}
if ((x + 2 <= (size - 1)) && (y - 1 >= 0)) {
mark(arr[x][y]);
if (backtrack(x + 2, y - 1))
return true;
else
unmark(arr[x][y]);
}
if ((x + 1 <= (size - 1)) && (y + 2 <= (size - 1))) {
mark(arr[x][y]);
if (backtrack(x + 1, y + 2))
return true;
else
unmark(arr[x][y]);
}
if ((x + 1 <= (size - 1)) && (y - 2 >= 0)) {
mark(arr[x][y]);
if (backtrack(x + 1, y - 2))
return true;
else
unmark(arr[x][y]);
}
}
return false;
}
bool horse::unvisited(int &val) {
if (val == 0)
return 1;
else
return 0;
}
int main() {
horse example(7);
if (example.backtrack(0, 0)) {
cout << " >>> Successful! <<< " << endl;
example.print();
} else
cout << " >>> Not possible! <<< " << endl;
}
output for the example (n = 7) above is like this: