So the Wikipedia page for path tracing (http://en.wikipedia.org/wiki/Path_tracing) contains a naive implementation of the algorithm with the following explanation underneath:
"All these samples must then be averaged to obtain the output color. Note this method of always sampling a random ray in the normal's hemisphere only works well for perfectly diffuse surfaces. For other materials, one generally has to use importance-sampling, i.e. probabilistically select a new ray according to the BRDF's distribution. For instance, a perfectly specular (mirror) material would not work with the method above, as the probability of the new ray being the correct reflected ray - which is the only ray through which any radiance will be reflected - is zero. In these situations, one must divide the reflectance by the probability density function of the sampling scheme, as per Monte-Carlo integration (in the naive case above, there is no particular sampling scheme, so the PDF turns out to be 1)."
The part I'm having trouble understanding is the part in bold. I am familiar with PDFs but I am not quite sure how they fit into here. If we stick to the mirror example, what would be the PDF value we would divide by? Why? How would I go about finding the PDF value to divide by if I was using an arbitrary BRDF value such as a Phong reflection model or Cook-Torrance reflection model, etc? Lastly, why do we divide by the PDF instead of multiply? If we divide, don't we give more weight to a direction with a lower probability?