(Note! that is not the solution)
I tried to find the exact solution as Lagrange polynomial in polar coordinates, but find out, that somtimes "smoothing curve" lies inside the convex polygon. The first derivatives matching condition (in start point) is fundamentaly solvable by adding extra moveable invisible point outside theta in [0:2 * pi]
interval. But above problem is not solvable anyways at my mind.
Here is the Lua script with my attemptions (uses qhull, rbox (from qhull toolchain) and gnuplot utilities):
function using()
return error('using: ' .. arg[0] .. ' <number of points>')
end
function points_from_file(infile)
local points = {}
local infile = io.open(infile, 'r')
local d = infile:read('*number')
if d ~= 2 then
error('dimensions is not two')
end
local n = infile:read('*number')
while true do
local x, y = infile:read('*number', '*number')
if not x and not y then
break
end
if not x or not y then
error('wrong format of input file: line does not contain two coordinates')
end
table.insert(points, {x, y})
end
infile:close()
if n ~= #points then
error('second line not contain real count of points')
end
return points
end
if not arg then
error("script should use as standalone")
end
if #arg ~= 1 then
using()
end
local n = tonumber(arg[1])
if not n then
using()
end
local bounding_box = math.sqrt(math.pi) / 2.0
local fnp = os.tmpname()
local fnchp = os.tmpname()
os.execute('rbox ' .. n .. ' B' .. bounding_box .. ' D2 n t | tee ' .. fnp .. ' | qhull p | tee ' .. fnchp .. ' > nul') -- Windows specific part is "> nul"
local sp = points_from_file(fnp) -- source points
os.remove(fnp)
local chp = points_from_file(fnchp) -- convex hull points
os.remove(fnchp)
local m = #chp
if m < 3 then
io.stderr:write('convex hull consist of less than three points')
return
end
local pole = {0.0, 0.0} -- offset of polar origin relative to cartesian origin
for _, point in ipairs(chp) do
pole[1] = pole[1] + point[1]
pole[2] = pole[2] + point[2]
end
pole[1] = pole[1] / m
pole[2] = pole[2] / m
print("pole = ", pole[1], pole[2])
local chcc = {}
for _, point in ipairs(chp) do
table.insert(chcc, {point[1] - pole[1], point[2] - pole[2]})
end
local theta_min = 2.0 * math.pi -- angle between abscissa ort of cartesian and ort of polar coordinates
local rho_mean = 0.0
local rho_max = 0.0
local chpc = {} -- {theta, rho} pairs
for _, point in ipairs(chcc) do
local rho = math.sqrt(point[1] * point[1] + point[2] * point[2])
local theta = math.atan2(point[2], point[1])
if theta < 0.0 then -- [-pi:pi] -> [0:2 * pi]
theta = theta + 2.0 * math.pi
end
table.insert(chpc, {theta, rho})
if theta_min > theta then
theta_min = theta
end
rho_mean = rho_mean + rho
if rho_max < rho then
rho_max = rho
end
end
theta_min = -theta_min
rho_mean = rho_mean / m
rho_max = rho_max / rho_mean
for pos, point in ipairs(chpc) do
local theta = (point[1] + theta_min) / math.pi -- [0:2 * pi] -> [0:2]
local rho = point[2] / rho_mean
table.remove(chpc, pos)
table.insert(chpc, pos, {theta, rho})
end
table.sort(chpc, function (lhs, rhs) return lhs[1] < rhs[1] end)
-- table.insert(chpc, {chpc[#chpc][1] - 2.0 * math.pi, chpc[#chpc][2]})
table.insert(chpc, {2.0, chpc[1][2]})
-- table.sort(chpc, function (lhs, rhs) return lhs[1] < rhs[1] end)
local solution = {}
solution.x = {}
solution.y = {}
for _, point in ipairs(chpc) do
table.insert(solution.x, point[1])
table.insert(solution.y, point[2])
end
solution.c = {}
for i, xi in ipairs(solution.x) do
local c = solution.y[i]
for j, xj in ipairs(solution.x) do
if i ~= j then
c = c / (xi - xj)
end
end
solution.c[i] = c
end
function solution:monomial(i, x)
local y = self.c[i]
for j, xj in ipairs(solution.x) do
if xj == x then
if i == j then
return self.y[i]
else
return 0.0
end
end
if i ~= j then
y = y * (x - xj)
end
end
return y
end
function solution:polynomial(x)
local y = self:monomial(1, x)
for i = 2, #solution.y do
y = y + self:monomial(i, x)
end
return y
end
local gnuplot = io.popen('gnuplot', 'w')
gnuplot:write('reset;\n')
gnuplot:write('set terminal wxt 1;\n')
gnuplot:write(string.format('set xrange [%f:%f];\n', -bounding_box, bounding_box))
gnuplot:write(string.format('set yrange [%f:%f];\n', -bounding_box, bounding_box))
gnuplot:write('set size square;\n')
gnuplot:write(string.format('set xtics %f;\n', 0.1))
gnuplot:write(string.format('set ytics %f;\n', 0.1))
gnuplot:write('set grid xtics ytics;\n')
gnuplot:write('plot "-" using 1:2 notitle with points, "-" using 1:2:3:4 notitle with vectors;\n')
for _, point in ipairs(sp) do
gnuplot:write(string.format('%f %f\n', point[1], point[2]))
end
gnuplot:write('e\n')
for _, point in ipairs(chcc) do
gnuplot:write(string.format('%f %f %f %f\n', pole[1], pole[2], point[1], point[2]))
end
gnuplot:write('e\n')
gnuplot:flush();
gnuplot:write('reset;\n')
gnuplot:write('set terminal wxt 2;\n')
gnuplot:write('set border 0;\n')
gnuplot:write('unset xtics;\n')
gnuplot:write('unset ytics;\n')
gnuplot:write('set polar;\n')
gnuplot:write('set grid polar;\n')
gnuplot:write('set trange [-pi:2 * pi];\n')
gnuplot:write(string.format('set rrange [-0:%f];\n', rho_max))
gnuplot:write('set size square;\n')
gnuplot:write('set view equal xy;\n')
-- gnuplot:write(string.format('set xlabel "%f";\n', rho_mean - 1.0))
gnuplot:write(string.format('set arrow 1 from 0,0 to %f,%f;\n', rho_max * math.cos(theta_min), rho_max * math.sin(theta_min)))
gnuplot:write(string.format('set label 1 " origin" at %f,%f left rotate by %f;\n', rho_max * math.cos(theta_min), rho_max * math.sin(theta_min), math.deg(theta_min)))
gnuplot:write('plot "-" using 1:2:3:4 notitle with vectors, "-" using 1:2 notitle with lines, "-" using 1:2 notitle with lines;\n')
for _, point in ipairs(chpc) do
gnuplot:write(string.format('0 0 %f %f\n', point[1] * math.pi, point[2]))
end
gnuplot:write('e\n')
for _, point in ipairs(chpc) do
gnuplot:write(string.format('%f %f\n', point[1] * math.pi, point[2]))
end
gnuplot:write('e\n')
do
local points_count = 512
local dx = 2.0 / points_count
local x = 0.0
for i = 1, points_count do
gnuplot:write(string.format('%f %f\n', x * math.pi, solution:polynomial(x)))
x = x + dx
end
gnuplot:write('e\n')
end
gnuplot:flush();
gnuplot:write('reset;\n')
gnuplot:write('set terminal wxt 3;\n')
gnuplot:write(string.format('set xrange [-1:2];\n'))
gnuplot:write(string.format('set yrange [0:2];\n'))
gnuplot:write(string.format('set size ratio %f;\n', rho_max / 3.0))
gnuplot:write(string.format('set xtics %f;\n', 0.5))
gnuplot:write(string.format('set ytics %f;\n', 0.5))
gnuplot:write('set grid xtics ytics;\n')
gnuplot:write(string.format('set arrow 1 nohead from 0,%f to 2,%f linetype 3;\n', chpc[1][2], chpc[1][2]))
gnuplot:write(string.format('set label 1 "glue points " at 0,%f right;\n', chpc[1][2]))
gnuplot:write('plot "-" using 1:2 notitle with lines, "-" using 1:2 notitle with lines;\n')
for _, point in ipairs(chpc) do
gnuplot:write(string.format('%f %f\n', point[1], point[2]))
end
gnuplot:write('e\n')
do
local points_count = 512
local dx = 2.0 / points_count
local x = 0.0
for i = 1, points_count do
gnuplot:write(string.format('%f %f\n', x, solution:polynomial(x)))
x = x + dx
end
gnuplot:write('e\n')
end
gnuplot:flush();
os.execute('pause');
gnuplot:write('exit\n');
gnuplot:flush();
gnuplot:close()
The second terminal contains Lagrange polynomial approximation.