In cases where there is a simple modification to the value of a recursive call, that operation can be moved to the front of the recursive function. The classic example of this is Tail recursion modulo cons, where a simple recursive function in this form:
def recur[A](...):List[A] = {
...
x :: recur(...)
}
which is not tail recursive, is transformed into
def recur[A]{...): List[A] = {
def consRecur(..., consA: A): List[A] = {
consA :: ...
...
consrecur(..., ...)
}
...
consrecur(...,...)
}
Alexlv's example is a variant of this.
This is such a well known situation that some compilers (I know of Prolog and Scheme examples but Scalac does not do this) can detect simple cases and perform this optimisation automatically.
Problems combining multiple calls to recursive functions have no such simple solution. TMRC optimisatin is useless, as you are simply moving the first recursive call to another non-tail position. The only way to reach a tail-recursive solution is remove all but one of the recursive calls; how to do this is entirely context dependent but requires finding an entirely different approach to solving the problem.
As it happens, in some ways your example is similar to the classic Fibonnaci sequence problem; in that case the naive but elegant doubly-recursive solution can be replaced by one which loops forward from the 0th number.
def fib (n: Long): Long = n match {
case 0 | 1 => n
case _ => fib( n - 2) + fib( n - 1 )
}
def fib (n: Long): Long = {
def loop(current: Long, next: => Long, iteration: Long): Long = {
if (n == iteration)
current
else
loop(next, current + next, iteration + 1)
}
loop(0, 1, 0)
}
For the Fibonnaci sequence, this is the most efficient approach (a streams based solution is just a different expression of this solution that can cache results for subsequent calls). Now,
you can also solve your problem by looping forward from c0/r0 (well, c0/r2) and calculating each row in sequence - the difference being that you need to cache the entire previous row. So while this has a similarity to fib, it differs dramatically in the specifics and is also significantly less efficient than your original, doubly-recursive solution.
Here's an approach for your pascal triangle example which can calculate pascal(30,60)
efficiently:
def pascal(column: Long, row: Long):Long = {
type Point = (Long, Long)
type Points = List[Point]
type Triangle = Map[Point,Long]
def above(p: Point) = (p._1, p._2 - 1)
def aboveLeft(p: Point) = (p._1 - 1, p._2 - 1)
def find(ps: Points, t: Triangle): Long = ps match {
// Found the ultimate goal
case (p :: Nil) if t contains p => t(p)
// Found an intermediate point: pop the stack and carry on
case (p :: rest) if t contains p => find(rest, t)
// Hit a triangle edge, add it to the triangle
case ((c, r) :: _) if (c == 0) || (c == r) => find(ps, t + ((c,r) -> 1))
// Triangle contains (c - 1, r - 1)...
case (p :: _) if t contains aboveLeft(p) => if (t contains above(p))
// And it contains (c, r - 1)! Add to the triangle
find(ps, t + (p -> (t(aboveLeft(p)) + t(above(p)))))
else
// Does not contain(c, r -1). So find that
find(above(p) :: ps, t)
// If we get here, we don't have (c - 1, r - 1). Find that.
case (p :: _) => find(aboveLeft(p) :: ps, t)
}
require(column >= 0 && row >= 0 && column <= row)
(column, row) match {
case (c, r) if (c == 0) || (c == r) => 1
case p => find(List(p), Map())
}
}
It's efficient, but I think it shows how ugly complex recursive solutions can become as you deform them to become tail recursive. At this point, it may be worth moving to a different model entirely. Continuations or monadic gymnastics might be better.
You want a generic way to transform your function. There isn't one. There are helpful approaches, that's all.
pascal
is incomplete. If you do apascal(1,0)
then you'd get astackoverflow
exception, so you might want to add a conditionif(c<0 || r<0 || c>r) throw new IllegalArgumentException("Columns can never be bigger than lines")
or perhaps anArithmeticException
? – Imad