I've been trying to realize a mesh that has all face normals pointing outward. In order to realize this, I load a mesh from a *.ctm file, then walk over all triangles to determine the normal using a cross product and if the normal is pointing to the negative z direction, I flip v1 and v2 (thus the normal orientation). After this is done I save the result to a *.ctm file and view it with Meshlab.
The result in Meshlab still shows that normals are pointing in both positive and negative z direction ( can be seen from the black triangles). Also when viewing the normals in Meshlab they are really pointing backwards.
Can anyone give me some advice on how to solve this?
The source code for the normalization part is:
pcl::PointCloud<pcl::PointXYZRGBA>::Ptr cloud1 (new pcl::PointCloud<pcl::PointXYZRGBA> ());
pcl::fromROSMsg (meshFixed.cloud,*cloud1);for(std::vector<pcl::Vertices>::iterator it = meshFixed.polygons.begin(); it != meshFixed.polygons.end(); ++it)
{
alglib::real_2d_array v0;
double _v0[] = {cloud1->points[it->vertices[0]].x,cloud1->points[it->vertices[0]].y,cloud1->points[it->vertices[0]].z};
v0.setcontent(3,1,_v0); //3 rows, 1col
alglib::real_2d_array v1;
double _v1[] = {cloud1->points[it->vertices[1]].x,cloud1->points[it->vertices[1]].y,cloud1->points[it->vertices[1]].z};
v1.setcontent(3,1,_v1); //3 rows, 1col
alglib::real_2d_array v2;
double _v2[] = {cloud1->points[it->vertices[2]].x,cloud1->points[it->vertices[2]].y,cloud1->points[it->vertices[2]].z};
v2.setcontent(1,3,_v2); //3 rows, 1col
alglib::real_2d_array normal;
normal = cross(v1-v0,v2-v0);
//if z<0 change indices order v1->v2 and v2->v1
alglib::real_2d_array normalizedNormal;
if(normal[2][0]<0)
{
int index1,index2;
index1 = it->vertices[1];
index2 = it->vertices[2];
it->vertices[1] = index2;
it->vertices[2] = index1;
//make normal of length 1
double normalScaling = 1.0/sqrt(dot(normal,normal));
normal[0][0] = -1*normal[0][0];
normal[1][0] = -1*normal[1][0];
normal[2][0] = -1*normal[2][0];
normalizedNormal = normalScaling * normal;
}
else
{
//make normal of length 1
double normalScaling = 1.0/sqrt(dot(normal,normal));
normalizedNormal = normalScaling * normal;
}
//add to normal cloud
pcl::Normal pclNormalizedNormal;
pclNormalizedNormal.normal_x = normalizedNormal[0][0];
pclNormalizedNormal.normal_y = normalizedNormal[1][0];
pclNormalizedNormal.normal_z = normalizedNormal[2][0];
normalsFixed.push_back(pclNormalizedNormal);
}
The result from this code is:
I've found some code in the VCG library to orient the face and vertex normals. After using this a large part of the mesh has correct face normals, but not all.
The new code:
// VCG library implementation
MyMesh m;
// Convert pcl::PolygonMesh to VCG MyMesh
m.Clear();
// Create temporary cloud in to have handy struct object
pcl::PointCloud<pcl::PointXYZRGBA>::Ptr cloud1 (new pcl::PointCloud<pcl::PointXYZRGBA> ());
pcl::fromROSMsg (meshFixed.cloud,*cloud1);
// Now convert the vertices to VCG MyMesh
int vertCount = cloud1->width*cloud1->height;
vcg::tri::Allocator<MyMesh>::AddVertices(m, vertCount);
for(unsigned int i=0;i<vertCount;++i)
m.vert[i].P()=vcg::Point3f(cloud1->points[i].x,cloud1->points[i].y,cloud1->points[i].z);
// Now convert the polygon indices to VCG MyMesh => make VCG faces..
int triCount = meshFixed.polygons.size();
if(triCount==1)
{
if(meshFixed.polygons[0].vertices[0]==0 && meshFixed.polygons[0].vertices[1]==0 && meshFixed.polygons[0].vertices[2]==0)
triCount=0;
}
Allocator<MyMesh>::AddFaces(m, triCount);
for(unsigned int i=0;i<triCount;++i)
{
m.face[i].V(0)=&m.vert[meshFixed.polygons[i].vertices[0]];
m.face[i].V(1)=&m.vert[meshFixed.polygons[i].vertices[1]];
m.face[i].V(2)=&m.vert[meshFixed.polygons[i].vertices[2]];
}
vcg::tri::UpdateBounding<MyMesh>::Box(m);
vcg::tri::UpdateNormal<MyMesh>::PerFace(m);
vcg::tri::UpdateNormal<MyMesh>::PerVertexNormalizedPerFace(m);
printf("Input mesh vn:%i fn:%i\n",m.VN(),m.FN());
// Start to flip all normals to outside
vcg::face::FFAdj<MyMesh>::FFAdj();
vcg::tri::UpdateTopology<MyMesh>::FaceFace(m);
bool oriented, orientable;
if ( vcg::tri::Clean<MyMesh>::CountNonManifoldEdgeFF(m)>0 ) {
std::cout << "Mesh has some not 2-manifold faces, Orientability requires manifoldness" << std::endl; // text
return; // can't continue, mesh can't be processed
}
vcg::tri::Clean<MyMesh>::OrientCoherentlyMesh(m, oriented,orientable);
vcg::tri::Clean<MyMesh>::FlipNormalOutside(m);
vcg::tri::Clean<MyMesh>::FlipMesh(m);
//vcg::tri::UpdateTopology<MyMesh>::FaceFace(m);
//vcg::tri::UpdateTopology<MyMesh>::TestFaceFace(m);
vcg::tri::UpdateNormal<MyMesh>::PerVertexNormalizedPerFace(m);
vcg::tri::UpdateNormal<MyMesh>::PerVertexFromCurrentFaceNormal(m);
// now convert VCG back to pcl::PolygonMesh
pcl::PointCloud<pcl::PointXYZRGBA>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZRGBA>);
cloud->is_dense = false;
cloud->width = vertCount;
cloud->height = 1;
cloud->points.resize (vertCount);
// Now fill the pointcloud of the mesh
for(int i=0; i<vertCount; i++)
{
cloud->points[i].x = m.vert[i].P()[0];
cloud->points[i].y = m.vert[i].P()[1];
cloud->points[i].z = m.vert[i].P()[2];
}
pcl::toROSMsg(*cloud,meshFixed.cloud);
std::vector<pcl::Vertices> polygons;
// Now fill the indices of the triangles/faces of the mesh
for(int i=0; i<triCount; i++)
{
pcl::Vertices vertices;
vertices.vertices.push_back(m.face[i].V(0)-&*m.vert.begin());
vertices.vertices.push_back(m.face[i].V(1)-&*m.vert.begin());
vertices.vertices.push_back(m.face[i].V(2)-&*m.vert.begin());
polygons.push_back(vertices);
}
meshFixed.polygons = polygons;
Which results in: (Meshlab still shows normals are facing both sides)