What is the size of an empty UDP datagram? And that of an empty TCP packet?
I can only find info about the MTU, but I want to know what is the "base" size of these, in order to estimate bandwidth consumption for protocols on top of them.
What is the size of an empty UDP datagram? And that of an empty TCP packet?
I can only find info about the MTU, but I want to know what is the "base" size of these, in order to estimate bandwidth consumption for protocols on top of them.
TCP:
Size of Ethernet frame - 24 Bytes
Size of IPv4 Header (without any options) - 20 bytes
Size of TCP Header (without any options) - 20 Bytes
Total size of an Ethernet Frame carrying an IP Packet with an empty TCP Segment - 24 + 20 + 20 = 64 bytes
UDP:
Size of Ethernet frame - 24 Bytes
Size of IPv4 Header (without any options) - 20 bytes
Size of UDP header - 8 bytes
Total size of an Ethernet Frame carrying an IP Packet with an empty UDP Datagram - 24 + 20 + 8 = 52 bytes
Himanshus answer is perfectly correct.
What might be misleading when looking at the structure of an Ethernet frame [see further reading], is that without payload the minimum size of an Ethernet frame would be 18 bytes: Dst Mac(6) + Src Mac(6) + Length (2) + Fcs(4), adding minimum size of IPv4 (20) and TCP (20) gives us a total of 58 bytes.
What has not been mentioned yet is that the minimum payload of an ethernet frame is 46 byte, so the 20+20 byte from the IPv4 an TCP are not enough payload! This means that 6 bytes have to be padded, thats where the total of 64 bytes is coming from.
18(min. Ethernet "header" fields) + 6(padding) + 20(IPv4) + 20(TCP) = 64 bytes
Hope this clears things up a little.
Further Reading:
See User Datagram Protocol. The UDP Header is 8 Bytes (64 bits) long.
The mimimum size of the bare TCP header is 5 words (32bit word), while the maximum size of a TCP header is 15 words.
Best wishes, Fabian
If you intend to calculate the bandwidth consumption and relate them to the maximum rate of your network (like 1Gb/s or 10Gb/s), it is necessary, as pointed out by Useless, to add the Ethernet framing overhead at layer 1 to the numbers calculated by Felix and others, namely
i.e. a total of 20 more bytes consumed per packet.