I'm tried to improve performance of copy operation via SSE and AVX:
#include <immintrin.h>
const int sz = 1024;
float *mas = (float *)_mm_malloc(sz*sizeof(float), 16);
float *tar = (float *)_mm_malloc(sz*sizeof(float), 16);
float a=0;
std::generate(mas, mas+sz, [&](){return ++a;});
const int nn = 1000;//Number of iteration in tester loops
std::chrono::time_point<std::chrono::system_clock> start1, end1, start2, end2, start3, end3;
//std::copy testing
start1 = std::chrono::system_clock::now();
for(int i=0; i<nn; ++i)
std::copy(mas, mas+sz, tar);
end1 = std::chrono::system_clock::now();
float elapsed1 = std::chrono::duration_cast<std::chrono::microseconds>(end1-start1).count();
//SSE-copy testing
start2 = std::chrono::system_clock::now();
for(int i=0; i<nn; ++i)
{
auto _mas = mas;
auto _tar = tar;
for(; _mas!=mas+sz; _mas+=4, _tar+=4)
{
__m128 buffer = _mm_load_ps(_mas);
_mm_store_ps(_tar, buffer);
}
}
end2 = std::chrono::system_clock::now();
float elapsed2 = std::chrono::duration_cast<std::chrono::microseconds>(end2-start2).count();
//AVX-copy testing
start3 = std::chrono::system_clock::now();
for(int i=0; i<nn; ++i)
{
auto _mas = mas;
auto _tar = tar;
for(; _mas!=mas+sz; _mas+=8, _tar+=8)
{
__m256 buffer = _mm256_load_ps(_mas);
_mm256_store_ps(_tar, buffer);
}
}
end3 = std::chrono::system_clock::now();
float elapsed3 = std::chrono::duration_cast<std::chrono::microseconds>(end3-start3).count();
std::cout<<"serial - "<<elapsed1<<", SSE - "<<elapsed2<<", AVX - "<<elapsed3<<"\nSSE gain: "<<elapsed1/elapsed2<<"\nAVX gain: "<<elapsed1/elapsed3;
_mm_free(mas);
_mm_free(tar);
It works. However, while the number of iterations in tester-loops - nn - increases, performance gain of simd-copy decreases:
nn=10: SSE-gain=3, AVX-gain=6;
nn=100: SSE-gain=0.75, AVX-gain=1.5;
nn=1000: SSE-gain=0.55, AVX-gain=1.1;
Can anybody explain what is the reason of mentioned performance decrease effect and is it advisable to manually vectorization of copy operation?
std::copy
is already using SSE/AVX, and the ramp up is impacting mainlystd::copy
and not the subsequent hand-coded SIMD copies. You could test this by changing the order of the copies I suppose. – Paul Rnn = 1000
is too small to measure. Going up tonn = 1000000
showsSSE gain: 1.02222
andAVX gain: 1.70371
- which is what I'd expect to see if the compiler is only using SSE by itself. – Mysticial