I'm trying to write some code to detect a wallhack for a game. Basically, some hacks exist which create a windows aero transparent window, and they draw the hack onto this external window, so it can't be detected by taking a screenshot of the game itself.
My approach at the moment is to - 1. take a screenshot of the game window. 2. take a screenshot of the windows desktop for the same coordinates. 3. perform image analysis to compare screenshot 1 to screenshot 2 to see if there is a difference.
My problem is that screenshot 1 and screenshot 2 are not performed simultaneously so new game frames can be drawn between the two screenshots, causing false positives when the images are compared.
I want to know if there is a way to coordinate the screenshots so they occur at exactly the same time ? or somehow stop the screen drawing any new frames until my screenshots are finished?
This is the code I use for taking screenshots. Note, I have even tried to take the 2 screenshots in parallel by queuing two work items. However, even this doesn't result in the screenshots happening at exactly the same time. So I wonder if there is some way to stop any further updates to screen from the graphics card until my screenshots finish? Or any other way I can do this?
public void DoBitBlt(IntPtr dest, int width, int height, IntPtr src)
{
GDI32.BitBlt(dest, 0, 0, width, height, src, 0, 0, GDI32.SRCCOPY);
}
public struct Windows
{
public Bitmap window;
public Bitmap desktop;
}
public Windows CaptureWindows(IntPtr window, IntPtr desktop, User32.RECT coords)
{
Windows rslt = new Windows();
// get te hDC of the target window
IntPtr hdcSrcWindow = User32.GetWindowDC(window);
IntPtr hdcSrcDesktop = User32.GetWindowDC(desktop);
// get the size
int width = coords.right - coords.left;
int height = coords.bottom - coords.top;
// create a device context we can copy to
IntPtr hdcDestWindow = GDI32.CreateCompatibleDC(hdcSrcWindow);
IntPtr hdcDestDesktop = GDI32.CreateCompatibleDC(hdcSrcDesktop);
// create a bitmap we can copy it to,
// using GetDeviceCaps to get the width/height
IntPtr hBitmapWindow = GDI32.CreateCompatibleBitmap(hdcSrcWindow, width, height);
IntPtr hBitmapDesktop = GDI32.CreateCompatibleBitmap(hdcSrcDesktop, width, height);
// select the bitmap object
IntPtr hOldWindow = GDI32.SelectObject(hdcDestWindow, hBitmapWindow);
IntPtr hOldDesktop = GDI32.SelectObject(hdcDestDesktop, hBitmapDesktop);
// bitblt over
var handle1 = new ManualResetEvent(false);
var handle2 = new ManualResetEvent(false);
Action actionWindow = () => { try { DoBitBlt(hdcDestWindow, width, height, hdcSrcWindow); } finally { handle1.Set(); } };
Action actionDesktop = () => { try { DoBitBlt(hdcDestDesktop, width, height, hdcSrcDesktop); } finally { handle2.Set(); } };
ThreadPool.QueueUserWorkItem(x => actionWindow());
ThreadPool.QueueUserWorkItem(x => actionDesktop());
WaitHandle.WaitAll(new WaitHandle[] { handle1, handle2 });
rslt.window = Bitmap.FromHbitmap(hBitmapWindow);
rslt.desktop = Bitmap.FromHbitmap(hBitmapDesktop);
// restore selection
GDI32.SelectObject(hdcDestWindow, hOldWindow);
GDI32.SelectObject(hdcDestDesktop, hOldDesktop);
// clean up
GDI32.DeleteDC(hdcDestWindow);
GDI32.DeleteDC(hdcDestDesktop);
User32.ReleaseDC(window, hdcSrcWindow);
User32.ReleaseDC(desktop, hdcSrcDesktop);
// free up the Bitmap object
GDI32.DeleteObject(hBitmapWindow);
GDI32.DeleteObject(hBitmapDesktop);
return rslt;
}
Parallel.Foreach
. TheThreadPool
does not guarantee parallelism. – Dustin Kingen