My question concerns the most efficient way of performing geometric image transformations on the GPU. The goal is essentially to remove lens distortion from aquired images in real time. I can think of several ways to do it, e.g. as a CUDA kernel (which would be preferable) doing an inverse transform lookup + interpolation, or the same in an OpenGL shader, or rendering a forward transformed mesh with the image texture mapped to it. It seems to me the last option could be the fastest because the mesh can be subsampled, i.e. not every pixel offset needs to be stored but can be interpolated in the vertex shader. Also the graphics pipeline really should be optimized for this. However, the rest of the image processing is probably going to be done with CUDA. If I want to use the OpenGL pipeline, do I need to start an OpenGL context and bring up a window to do the rendering, or can this be achieved anyway through the CUDA/OpenGL interop somehow? The aim is not to display the image, the processing will take place on a server, potentially with no display attached. I've heard this could crash OpenGL if bringing up a window.
I'm quite new to GPU programming, any insights would be much appreciated.