Even I had the same problem understanding how are CPython, JPython, IronPython, PyPy are different from each other.
So, I am willing to clear three things before I begin to explain:
- Python: It is a language, it only states/describes how to convey/express yourself to the interpreter (the program which accepts your python code).
- Implementation: It is all about how the interpreter was written, specifically, in what language and what it ends up doing.
- Bytecode: It is the code that is processed by a program, usually referred to as a virtual machine, rather than by the "real" computer machine, the hardware processor.
CPython is the implementation, which was
written in C language. It ends up producing bytecode (stack-machine
based instruction set) which is Python specific and then executes it.
The reason to convert Python code to a bytecode is because it's easier to
implement an interpreter if it looks like machine instructions. But,
it isn't necessary to produce some bytecode prior to execution of the
Python code (but CPython does produce).
If you want to look at CPython's bytecode then you can. Here's how you can:
>>> def f(x, y): # line 1
... print("Hello") # line 2
... if x: # line 3
... y += x # line 4
... print(x, y) # line 5
... return x+y # line 6
... # line 7
>>> import dis # line 8
>>> dis.dis(f) # line 9
2 0 LOAD_GLOBAL 0 (print)
2 LOAD_CONST 1 ('Hello')
4 CALL_FUNCTION 1
6 POP_TOP
3 8 LOAD_FAST 0 (x)
10 POP_JUMP_IF_FALSE 20
4 12 LOAD_FAST 1 (y)
14 LOAD_FAST 0 (x)
16 INPLACE_ADD
18 STORE_FAST 1 (y)
5 >> 20 LOAD_GLOBAL 0 (print)
22 LOAD_FAST 0 (x)
24 LOAD_FAST 1 (y)
26 CALL_FUNCTION 2
28 POP_TOP
6 30 LOAD_FAST 0 (x)
32 LOAD_FAST 1 (y)
34 BINARY_ADD
36 RETURN_VALUE
Now, let's have a look at the above code. Lines 1 to 6 are a function definition. In line 8, we import the 'dis' module which can be used to view the intermediate Python bytecode (or you can say, disassembler for Python bytecode) that is generated by CPython (interpreter).
NOTE: I got the link to this code from #python IRC channel: https://gist.github.com/nedbat/e89fa710db0edfb9057dc8d18d979f9c
And then, there is Jython, which is written in Java and ends up producing Java byte code. The Java byte code runs on Java Runtime Environment, which is an implementation of Java Virtual Machine (JVM). If this is confusing then I suspect that you have no clue how Java works. In layman terms, Java (the language, not the compiler) code is taken by the Java compiler and outputs a file (which is Java byte code) that can be run only using a JRE. This is done so that, once the Java code is compiled then it can be ported to other machines in Java byte code format, which can be only run by JRE. If this is still confusing then you may want to have a look at this web page.
Here, you may ask if the CPython's bytecode is portable like Jython, I suspect not. The bytecode produced in CPython implementation was specific to that interpreter for making it easy for further execution of code (I also suspect that, such intermediate bytecode production, just for the ease the of processing is done in many other interpreters).
So, in Jython, when you compile your Python code, you end up with Java byte code, which can be run on a JVM.
Similarly, IronPython (written in C# language) compiles down your Python code to Common Language Runtime (CLR), which is a similar technology as compared to JVM, developed by Microsoft.