Hi i was trying to run KmeanClustering Example in Mahout, getting stucked with an error in the sample Code. I'm getting error in the the below code snipet
Cluster cluster = new Cluster(vec, i, new EuclideanDistanceMeasure());
It gives an error
Cannot instantiate the Type Cluster
(which is an Interface, my understanding).I want to run kmeans on My sample dataSet, Can anyone guide me in that too.
I have Included The following Jars in my EClipse IDE
mahout-math-0.7-cdh4.3.0.jar
hadoop-common-2.0.0-cdh4.2.1.jar
hadoop-hdfs-2.0.0-cdh4.2.1.jar
hadoop-mapreduce-client-core-2.0.0-cdh4.2.1.jar
mahout-core-0.7-cdh4.3.0.jar
Check if i'm missing any essential jar, I will be running this On Hadoop CDH4.2.1
Here attaching my whole Code, taken from Github
package tryout;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.Text;
import org.apache.mahout.math.RandomAccessSparseVector;
import org.apache.mahout.math.Vector;
import org.apache.mahout.math.VectorWritable;
import org.apache.mahout.clustering.Cluster;
import org.apache.mahout.clustering.classify.WeightedVectorWritable;
import org.apache.mahout.clustering.kmeans.KMeansDriver;
import org.apache.mahout.common.distance.EuclideanDistanceMeasure;
public class SimpleKMeansClustering {
public static final double[][] points = { {1, 1}, {2, 1}, {1, 2},
{2, 2}, {3, 3}, {8, 8},
{9, 8}, {8, 9}, {9, 9}};
public static void writePointsToFile(List<Vector> points,
String fileName,FileSystem fs,Configuration conf) throws IOException {
Path path = new Path(fileName);
SequenceFile.Writer writer = new SequenceFile.Writer(fs, conf,path, LongWritable.class, VectorWritable.class);
long recNum = 0;
VectorWritable vec = new VectorWritable();
for (Vector point : points) {
vec.set(point);
writer.append(new LongWritable(recNum++), vec);
} writer.close();
}
public static List<Vector> getPoints(double[][] raw) {
List<Vector> points = new ArrayList<Vector>();
for (int i = 0; i < raw.length; i++) {
double[] fr = raw[i];
Vector vec = new RandomAccessSparseVector(fr.length);
vec.assign(fr);
points.add(vec);
}
return points;
}
public static void main(String args[]) throws Exception {
int k = 2;
List<Vector> vectors = getPoints(points);
File testData = new File("testdata");
if (!testData.exists()) {
testData.mkdir();
}
testData = new File("testdata/points");
if (!testData.exists()) {
testData.mkdir();
}
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(conf);
writePointsToFile(vectors, "testdata/points/file1", fs, conf);
Path path = new Path("testdata/clusters/part-00000");
SequenceFile.Writer writer = new SequenceFile.Writer(fs, conf,path, Text.class, Cluster.class);
for (int i = 0; i < k; i++) {
Vector vec = vectors.get(i);
Cluster cluster = new Cluster(vec, i, new EuclideanDistanceMeasure());
writer.append(new Text(cluster.getIdentifier()), cluster);
}
writer.close();
KMeansDriver.run(conf, new Path("testdata/points"), new Path("testdata/clusters"),
new Path("output"), new EuclideanDistanceMeasure(), 0.001, 10,
true, false);
SequenceFile.Reader reader = new SequenceFile.Reader(fs,new Path("output/" + Cluster.CLUSTERED_POINTS_DIR+ "/part-m-00000"), conf);
IntWritable key = new IntWritable();
WeightedVectorWritable value = new WeightedVectorWritable();
while (reader.next(key, value)) {
System.out.println(value.toString() + " belongs to cluster " + key.toString());
}
reader.close();
}
}
Also guide me that, if i have my own dataset how to approach for that.
Kluster
. – Thomas Jungblut