First off, I'd like to know who's using Ada these days. I actually like the language, and there's even a GUI library for Linux/Ada, but I haven't heard anything about active Ada development for years. Thanks to its military connections, I'm really not sure if it's ancient history or so wildly successful that all mention of its use is classified.
I think there's a couple of reason for no GC in Ada. First, and foremost, it dates back to an era where most compiled languages used primarily stack or static memory, or in a few cases, explicit heap allocate/free. GC as a general philosophy really only took off about 1990 or so, when OOP, improved memory management algorithms and processors powerful enough to spare the cycles to run it all came into their own. What simply compiling Ada could do to an IBM 4331 mainframe in 1989 was simply merciless. Now I have a cell phone that can outperform that machine's CPU.
Another good reason is that there are people who think that rigorous program design includes precise control over memory resources, and that there shouldn't be any tolerance for letting dynamically-acquired objects float. Sadly, far too many people ended up leaking memory as dynamic memory became more and more the rule. Plus, like the "efficiency" of assembly language over high-level languages, and the "efficiency" of raw JDBC over ORM systems, the "efficiency" of manual memory management tends to invert as it scales up (I've seen ORM benchmarks where the JDBC equivalent was only half as efficient). Counter-intuitive, I know, but these days systems are much better at globally optimizing large applications, plus they're able to make radical re-optimizations in response to superficially minor changes.Including dynamically re-balancing algorithms on the fly based on detected load.
I'm afraid I'm going to have to differ with those who say that real-time systems can't afford GC memory. GC is no longer something that freezes the whole system every couple of minutes. We have much more intelligent ways to reclaim memory these days.