Here's a SQL 2008 version:
CREATE PROCEDURE dbo.PaymentApply
@CustID int,
@Amount decimal(11, 2),
@AsOfDate datetime
AS
WITH Totals AS (
SELECT
T.*,
RunningTotal =
Coalesce (
(SELECT Sum(S.Buyin - Coalesce(S.CreditPaid, 0))
FROM dbo.Trans S
WHERE
T.CustID = S.CustID
AND S.Type = 'Credit'
AND S.Buyin < Coalesce(S.CreditPaid, 0)
AND (
T.Starttime > S.Starttime
OR (
T.Starttime = S.Starttime
AND T.TrID > S.TrID
)
)
),
0)
FROM
dbo.Trans T
WHERE
CustID = @CustID
AND T.Type = 'Credit'
AND T.Buyin < Coalesce(T.CreditPaid, 0)
)
UPDATE T
SET
T.EndTime = P.EndTime,
T.CreditPaid = Coalesce(T.CreditPaid, 0) + P.CreditPaid
FROM
Totals T
CROSS APPLY (
SELECT TOP 1
V.*
FROM
(VALUES
(T.Buyin - Coalesce(T.CreditPaid, 0), @AsOfDate),
(@Amount - RunningTotal, NULL)
) V (CreditPaid, EndTime)
ORDER BY
V.CreditPaid,
V.EndTime DESC
) P
WHERE
T.RunningTotal <= @Amount
AND @Amount > 0;
;
See a Live Demo at SQL Fiddle
Or, for anyone using SQL 2012, you can replace the contents of the CTE with a better-performing and simpler query using the new windowing functions:
SELECT
*,
RunningTotal =
Sum(Buyin - Coalesce(CreditPaid, 0)) OVER(
ORDER BY StartTime
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
) - Buyin
FROM dbo.Trans
WHERE
CustID = @CustID
AND Type = 'Credit'
AND Buyin - Coalesce(CreditPaid, 0) > 0
See a Live Demo at SQL Fiddle
Here's how they work:
- We calculate the running total for all the prior rows where the
CreditPaid
amount is less than the Buyin
amount. Note this does NOT include the current row.
- From this we can determine what portion of the payment will apply to each row and which rows will be involved in the payment. If the sum of all the credits for all the prior rows are higher than the payment, then this row will NOT be included, thus
T.RunningTotal <= @Amount
. That's because all the prior rows will fully consume the payment by this point, so we can stop applying it.
- For each row where we will apply a payment, we want to pay as much as possible, but we have to pay attention to the last row where we may not be paying the full amount (as is the case with the third credit in the example). So we'll be paying one of two amounts: the full credit amount (with more rows to receive payments) or only the portion left over which could be less than the full credit for that row (and this is the last row). We accomplish this by taking the lesser of either 1) the full remaining
Buyin - CreditPaid
amount, or 2) what's left of the full amount @Amount - RunningTotalOfPriorRows
. I could have done this as a CASE
expression, but I like using the Min
function, especially because we would have had to do two CASE
expressions to also determine whether to also update the EndTime
column (per your requirements).
- The SQL 2012 version simply calculates the same thing as the 2008 version: the sum of
Buyin - CreditPaid
for all the prior rows, using a windowing function instead of a correlated subquery.
- Finally, we perform the update to all rows where the
RunningTotal
is less than the amount to be applied (since if it were equal to the amount, there would be no payment left for the current row).
Now, there are some larger considerations that you should think about.
Some of your scheme I like--I am not convinced that, as some commenters have said, you should ignore the individual transactions. I think that handling the individual transactions can be very important. It's much like how hospitals have one medical record number for each patient (MRN) but open a new account / file / visit each time the patient has a service performed. Each account is treated separately, and this is for many reasons, including--and this is where it seems important for you, too--the need for the customer to understand what exactly is comprising the total. It can be shocking to see the total all added up, but when this is broken out into individual transactions on individual dates, this makes a lot more sense to people and they can begin to understand exactly how they spent more money than they remembered at the time. "You owe me 600 bucks" can be harder to face than "your transactions for $100, $300, and $200 are still unpaid". :)
So, on to some big considerations here.
If you go with the theory that a transactional or balance-based account starts at 0 as a sort of "anchor", and to find the current balance you simply have to add up all the transactions: well, this does indeed satisfy relational theory, but in practice it is completely unworkable because it does not provide a fast, accurate way to get the current balance. It is imperative to have the current balance saved as a discrete value. If you were a bank, how would you know how much money you had, without adding up perhaps dozens of years of transaction history each time? Instead, it may be better to think of the current balance as the "anchor" (instead of 0) and think of the transactions as going backward in time. Additionally, there is no harm in recording periodic balances. Banks do this by closing out periods into statements, with a defined balance as of each statement closing date. There is no need to go all the way back to zero, since you don't care too much about the balance at the old, unanchored end of the history. You know that eventually every account started at 0. Big deal!
Given these thoughts, it is important for you to have a table where the customer's total account balance is simply stated. You also need a place to record his payments, refunds, cancellations, and so on. This should be separate from the accounts (in your case, transactions) themselves, because there is not a one-to-one correspondence between payment transactions and credit transactions. Already in your current scheme you have partially paid transactions with no date recorded--this is a huge gap in the system that will come back to bite you. What if a customer paid $10 a day toward a $200 credit for 20 days? 19 of those payments would show no date paid.
What I recommend, then, is that you create a stored procedure (SP) that applies payments to totals first, and then create another one that will "rewrite" the payments into the transactions in an on-demand way. Think about what a credit card company has to do if they "re-rate" your account. Perhaps they acted on incorrect information and increased your interest rate on a certain date. (This actually happened to me. I proved to them that the collections activity they were responding to was not my fault--it had been retracted by the original company after I showed them that one of their staff had mistakenly changed my mailing address, and I had never received a bill to be able to pay. So they had to be able to re-run all the purchase/debit/interest rate calculations on my account retroactively, to recalculate everything after the original change date based on the correct interest rate.) Think about this a bit and you will see that it is quite possible to operate this way, as long as you design your system properly. Your SP is given a date range or set of transactions within which it is allowed to work, and then "rewrites" history as if the old history had never existed.
But, you don't actually want to destroy history, so this is further complicated by the fact that at one point in time, your best knowledge of the customer's account balance for a time period was a different amount than your current best knowledge of their account balance for that time period--both are true data and need to be kept.
Let's say you discover that your system occasionally doubled up Credit transactions mistakenly. When you fix the customer data, you need to be able to see the fact that they had the problem, even though they don't have it now. This is done by using additional date columns EffectiveDate
and ExpirationDate
--or whatever you want to call them. Then, these need to be part of the clustered index, and used on every query to always get the current values. I highly recommend using 9999-12-31
instead of NULL
as your ExpirationDate
value for current rows--this will have a huge positive impact on performance when querying for current data. I also recommend putting the ExpirationDate
as the first column in the clustered index (or at least, before the EffectiveDate
column), since history will always potentially have many more records than the future, so it will be more selective than EffectiveDate
being first (think a bit: all past knowledge will have EffectiveDate =< GetDate()
but only current or future data will have ExpirationDate > GetDate()
). To drive the point home: you don't delete. You expire old rows by setting a column to the date the knowledge became obsolete, and you insert new rows representing the new knowledge, with a column showing the date you learned this information and having an indefinitely-open "to the future" value in the other date column.
And finally a couple of single points:
- The
CreditPaid
column should be NOT NULL
with a default of 0
. I had to throw in a bunch of Coalesce
s to deal with the NULL
s.
- You need to handle overpayments somehow. Either by preventing them, or by storing the overpaid portion value and applying it later. You could OUTPUT the results of the UPDATE statement into a table, then select the Sum from this and make the SP return any unused payment value. There are many ways to handle this. If you build the "re-rate" SP as I suggested, then this won't be too much of a problem, as you can rerun it after receiving new transactions (then immediately (re)apply all payments for any open periods).
At this point I can't go on too much more, but I hope that these thoughts help you. Your design is a good start, but it needs some work to get it to the point where it will function well as an enterprise-quality system.
UPDATE
I corrected a glitch in the 2008 version (adding the conditions from the outer query to the subquery).
And here's my last edit (all: please do not edit this answer again or it will be converted to community wiki).
If you do go with a scheme where rows are marked with the dates they are understood to be true (EffectiveDate
and ExpirationDate
), you can make coding in your system a little easier by creating inline table functions that select only the active rows from the table WHERE EffectiveDate <= GetDate() AND GetDate() < ExpirationDate
. Pay careful attention to the comparison operators you're using (e.g., <=
vs <
), and use date ranges that are inclusive at the start and exclusive at the end. If you aren't sure what that means, please do look these terms up and understand them before proceeding. You want to be able to change the resolution of your date data type in the future, without breaking any of your queries. If you use an inclusive end date, this will not be possible. There are many posts online talking about how to properly query for dates in SQL.
Something like this:
CREATE FUNCTION dbo.TransCurrent
RETURNS TABLE
AS
RETURN (
SELECT *
FROM dbo.Trans
WHERE
EffectiveDate <= GetDate()
AND GetDate() < ExpirationDate --make clustered index have this first!
);
Do NOT confuse this with a multi-statement table-value-returning function. That will NOT perform well. This function type here will perform well because it can be inlined into the query, where basically the engine takes the logical intent of what the function is doing, and disposes with the function call entirely. Using any other kind of function will defeat this and your performance will go into the pot as your table grows in size.
EndTime
for? If that records when a credit is paid off, what happens if it's paid in installments? Personally, I think I'd want more history of when things were paid, meaning another table. – Clockwork-Muse