Class foo act as interface, it has a pure virtual function and also provide some public overloaded function with same name for convenience so that derived class won't need to provide them in every implementation.
But since derived class must override the pure virtual function, it hides foo's public function.
I tried with "using foo::A", but it won't work because "using" will bring all function including the private one and result in compiler error "error C2876: 'foo' : not all overloads are accessible".
class foo
{
private:
virtual void A(int a)=0;
public:
void A()
{
A(1000);
}
void A(int a, int b)
{
A(a+b);
}
};
class bar : public foo
{
private:
virtual void A(int a)
{
cout << a << "\n";
}
};
int main()
{
bar x;
x.A();
return 0;
}
I know I can redefine every overloaded function in every class which derived from foo, but this defeat the purpose of convenience.
Or I can cast bar to foo before calling A(), but this approach will get confused since I need to remember which function is define in which class. For example:
class foo
{
private:
virtual void A(int a)=0;
public:
void A()
{
A(1000);
}
void A(int a, int b)
{
A(a+b);
}
};
class bar : public foo
{
private:
virtual void A(int a)
{
cout << "bar:" << a << "\n";
}
public:
void A(int a, int b, int c)
{
A(a+b+c);
}
};
class foobar : public bar
{
private:
virtual void A(int a)
{
cout << "foobar:" << a << "\n";
}
};
int main()
{
foobar x;
x.foo::A();
x.bar::A(1,2,3);
return 0;
}
I need to clearly remember A withouth argument come from foo, and A with three arguments come from bar. This is also not good for convenience.
Aimpl
. – Tadeusz Kopec