2
votes

I am newbie to Hadoop. I have successfully configured a hadoop setup in pseudo distributed mode. Now I would like to know what's the logic of choosing the number of map and reduce tasks. What do we refer to?

Thanks

2

2 Answers

2
votes

You cannot generalize how number of mappers/reducers are to be set.

Number of Mappers: You cannot set number of mappers explicitly to a certain number(There are parameters to set this but it doesn't come into effect). This is decided by the number of Input Splits created by hadoop for your given set of input. You may control this by setting mapred.min.split.size parameter. For more read the InputSplit section here. If you have a lot of mappers being generated due to huge amount of small files and you want to reduce number of mappers then you will need to combine data from more than one files. Read this: How to combine input files to get to a single mapper and control number of mappers.

To quote from the wiki page:

The number of maps is usually driven by the number of DFS blocks in the input files. Although that causes people to adjust their DFS block size to adjust the number of maps. The right level of parallelism for maps seems to be around 10-100 maps/node, although we have taken it up to 300 or so for very cpu-light map tasks. Task setup takes awhile, so it is best if the maps take at least a minute to execute.

Actually controlling the number of maps is subtle. The mapred.map.tasks parameter is just a hint to the InputFormat for the number of maps. The default InputFormat behavior is to split the total number of bytes into the right number of fragments. However, in the default case the DFS block size of the input files is treated as an upper bound for input splits. A lower bound on the split size can be set via mapred.min.split.size. Thus, if you expect 10TB of input data and have 128MB DFS blocks, you'll end up with 82k maps, unless your mapred.map.tasks is even larger. Ultimately the InputFormat determines the number of maps.

The number of map tasks can also be increased manually using the JobConf's conf.setNumMapTasks(int num). This can be used to increase the number of map tasks, but will not set the number below that which Hadoop determines via splitting the input data.

Number of Reducers: You can explicitly set the number of reducers. Just set the parameter mapred.reduce.tasks. There are guidelines for setting this number, but usually the default number of reducers should be good enough. At times a single report file is required, in those cases you might want number of reducers to be set to be 1.

Again to quote from wiki:

The right number of reduces seems to be 0.95 or 1.75 * (nodes * mapred.tasktracker.tasks.maximum). At 0.95 all of the reduces can launch immediately and start transfering map outputs as the maps finish. At 1.75 the faster nodes will finish their first round of reduces and launch a second round of reduces doing a much better job of load balancing.

Currently the number of reduces is limited to roughly 1000 by the buffer size for the output files (io.buffer.size * 2 * numReduces << heapSize). This will be fixed at some point, but until it is it provides a pretty firm upper bound.

The number of reduces also controls the number of output files in the output directory, but usually that is not important because the next map/reduce step will split them into even smaller splits for the maps.

The number of reduce tasks can also be increased in the same way as the map tasks, via JobConf's conf.setNumReduceTasks(int num).

0
votes

Actually no. of mappers is primarily governed by the no. of InputSplits created by the InputFormat you are using and the no. of reducers by the no. of partitions you get after the map phase. Having said that, you should also keep the no of slots, available per slave, in mind, along with the available memory. But as a rule of thumb you could use this approach :

Take the no. of virtual CPUs*.75 and that's the no. of slots you can configure. For example, if you have 12 physical cores (or 24 virtual cores), you would have (24*.75)=18 slots. Now, based on your requirement you could choose how many mappers and reducers you want to use. With 18 MR slots, you could have 9 mappers and 9 reducers or 12 mappers and 9 reducers or whatever you think is OK with you.

HTH