Let G = (V,E) be a Directed Acyclic Graph (DAG). V is the set of vertexes, while E is the set of edges.
Now, suppose that G is corrupted by some annotators in a crowd, according to the crowdsourcing paradigm:
- Some of them may decide to remove some edge
ebelonging toE - Some of them may decide to add an edge
ewhich was not existing
The result of the work of an annotator i is a graph whose set of vertexes V is the same as the original one and whose set of edges Ei may differ from the original one. If n is the number of annotators, we come up with n different graphs, having the same set of vertexes V, but a different set of edges E. Let G1 = (V,E1), ..., Gn = (V,En) be the set of graphs.
I would like to know whether there is a way of merging these graphs, so as to find a consensus on the presence/absence of each possible edge e between two vertexes v1,v2 in V. The purpose of this operation is the one of fusing the opinion of each annotator about the construction of the set of edges E in the graph G. The final graph has to be a DAG.