As @Lev says, you have flattened your arrays. You don't actually need to do this to perform the mean. Say you have an array of 2 3x4 images, then you'd have something like this:
In [291]: b = np.random.rand(2,3,4)
In [292]: b.shape
Out[292]: (2, 3, 4)
In [293]: b
Out[293]:
array([[[ 0.18827554, 0.11340471, 0.45185287, 0.47889188],
[ 0.35961448, 0.38316556, 0.73464482, 0.37597429],
[ 0.81647845, 0.28128797, 0.33138755, 0.55403119]],
[[ 0.92025024, 0.55916671, 0.23892798, 0.59253267],
[ 0.15664109, 0.12457157, 0.28139198, 0.31634361],
[ 0.33420446, 0.27599807, 0.40336601, 0.67738928]]])
Perform the mean over the first axis, leaving the shape of the arrays:
In [300]: b.mean(0)
Out[300]:
array([[ 0.55426289, 0.33628571, 0.34539042, 0.53571227],
[ 0.25812778, 0.25386857, 0.5080184 , 0.34615895],
[ 0.57534146, 0.27864302, 0.36737678, 0.61571023]])
In [301]: b - b.mean(0)
Out[301]:
array([[[-0.36598735, -0.222881 , 0.10646245, -0.0568204 ],
[ 0.10148669, 0.129297 , 0.22662642, 0.02981534],
[ 0.24113699, 0.00264495, -0.03598923, -0.06167904]],
[[ 0.36598735, 0.222881 , -0.10646245, 0.0568204 ],
[-0.10148669, -0.129297 , -0.22662642, -0.02981534],
[-0.24113699, -0.00264495, 0.03598923, 0.06167904]]])
For many uses, this will also be faster than keeping your images as a list of arrays, since the numpy operations are done on one array instead of through a list of arrays. Most methods, like mean
, cov
, etc accept the axis
argument, and you can list all the dimensions to perform it on without having to flatten.
To apply this to your script, I would do something like this, keeping the original dimensionalities:
images = np.asarray([Image.open(fn).convert('L').resize((90, 90)) for fn in filenames])
# so images.shape = (len(filenames), 90, 90)
m = images.mean(0)
# numpy broadcasting will automatically subract the (90, 90) mean image from each of the `images`
# m.shape = (90, 90)
# shifted_images.shape = images.shape = (len(filenames), 90, 90)
shifted_images = images - m
#Step 7: input image
input_image = Image.open(...).convert('L').resize((90, 90))
T = np.asarray(input_image)
n = T - m
As a final comment, if speed is an issue, it would be faster to use np.dstack to join your images:
In [354]: timeit b = np.asarray([np.empty((50,100)) for i in xrange(1000)])
1 loops, best of 3: 824 ms per loop
In [355]: timeit b = np.dstack([np.empty((50,100)) for i in xrange(1000)]).transpose(2,0,1)
10 loops, best of 3: 118 ms per loop
But it's likely that loading the images takes most of the time, and if that's the case you can ignore this.