54
votes

How to get a data frame with the same data as an already existing matrix has?

A simplified example of my matrix:

mat <- matrix(c(0, 0.5, 1, 0.1, 0.2, 0.3, 0.3, 0.4, 0.5),
              ncol = 3, nrow = 3,
              dimnames = list(NULL, c("time", "C_0", "C_1")))

> mat
     time C_0 C_1
[1,]  0.0 0.1 0.3
[2,]  0.5 0.2 0.4
[3,]  1.0 0.3 0.5

I would like to create a data frame that looks like this:

     name   time   val
1    C_0    0.0    0.1
2    C_0    0.5    0.2
3    C_0    1.0    0.3
4    C_1    0.0    0.3
5    C_1    0.5    0.4
6    C_1    1.0    0.5

All my attempts are quite clumsy, for example:

data.frame(cbind(c(rep("C_1", 3), rep("C_2", 3)),
                 rbind(cbind(mat[,"time"], mat[,"C_0"]),
                       cbind(mat[,"time"], mat[,"C_1"]))))

Does anyone have an idea of how to do this more elegantly? Please note that my real data has a few more columns (40 columns).

5
You are looking for ?melt. Also search for [r] reshape2 in the SO search boxRicardo Saporta

5 Answers

52
votes

If you change your time column into row names, then you can use as.data.frame(as.table(mat)) for simple cases like this.

Example:

data <- c(0.1, 0.2, 0.3, 0.3, 0.4, 0.5)
dimnames <- list(time=c(0, 0.5, 1), name=c("C_0", "C_1"))
mat <- matrix(data, ncol=2, nrow=3, dimnames=dimnames)
as.data.frame(as.table(mat))
  time name Freq
1    0  C_0  0.1
2  0.5  C_0  0.2
3    1  C_0  0.3
4    0  C_1  0.3
5  0.5  C_1  0.4
6    1  C_1  0.5

In this case time and name are both factors. You may want to convert time back to numeric, or it may not matter.

12
votes

You can use stack from the base package. But, you need first to coerce your matrix to a data.frame and to reorder the columns once the data is stacked.

mat <- as.data.frame(mat)
res <- data.frame(time= mat$time,stack(mat,select=-time))
res[,c(3,1,2)]

  ind time values
1 C_0  0.0    0.1
2 C_0  0.5    0.2
3 C_0  1.0    0.3
4 C_1  0.0    0.3
5 C_1  0.5    0.4
6 C_1  1.0    0.5

Note that stack is generally more efficient than the reshape2 package.

5
votes

melt() from the reshape2 package gets you close ...

library(reshape2)
(res <- melt(as.data.frame(mat), id="time"))
#   time variable value
# 1  0.0      C_0   0.1
# 2  0.5      C_0   0.2
# 3  1.0      C_0   0.3
# 4  0.0      C_1   0.3
# 5  0.5      C_1   0.4
# 6  1.0      C_1   0.5

... although you may want to post-process its results to get your preferred column names and ordering.

setNames(res[c("variable", "time", "value")], c("name", "time", "val"))
#   name time val
# 1  C_0  0.0 0.1
# 2  C_0  0.5 0.2
# 3  C_0  1.0 0.3
# 4  C_1  0.0 0.3
# 5  C_1  0.5 0.4
# 6  C_1  1.0 0.5
1
votes

Using dplyr and tidyr:

library(dplyr)
library(tidyr)

df <- as_data_frame(mat) %>%      # convert the matrix to a data frame
  gather(name, val, C_0:C_1) %>%  # convert the data frame from wide to long
  select(name, time, val)         # reorder the columns

df
# A tibble: 6 x 3
   name  time   val
  <chr> <dbl> <dbl>
1   C_0   0.0   0.1
2   C_0   0.5   0.2
3   C_0   1.0   0.3
4   C_1   0.0   0.3
5   C_1   0.5   0.4
6   C_1   1.0   0.5
0
votes

I've found the following "cheat" to work very neatly and error-free

> dimnames <- list(time=c(0, 0.5, 1), name=c("C_0", "C_1"))
> mat <- matrix(data, ncol=2, nrow=3, dimnames=dimnames)
> head(mat, 2) #this returns the number of rows indicated in a data frame format
> df <- data.frame(head(mat, 2)) #"data.frame" might not be necessary

Et voila!