It's possible that the confusion is because you're comparing a description of sorting a linked list with a description of sorting an array. But I can't be sure, since you didn't cite your sources.
The easiest way to understand sorting algorithms is often to get a detailed description of the algorithm (not vague stuff like "this sort uses swap. Somewhere. I'm not saying where"), get some playing cards (5-10 should be enough for simple sort algorithms), and run the algorithm by hand.
Selection sort: scan through the unsorted data looking for the smallest remaining element, then swap it into the position immediately following the sorted data. Repeat until finished. If sorting a list, you don't need to swap the smallest element into position, you could instead remove the list node from its old position and insert it at the new.
Insertion sort: take the element immediately following the sorted data, scan through the sorted data to find the place to put it, and put it there. Repeat until finished.
Insertion sort can use swap during its "scan" phase, but doesn't have to and it's not the most efficient way unless you are sorting an array of a data type which: (a) cannot be moved, only copied or swapped; and (b) is more expensive to copy than to swap. If insertion sort does use swap, the way it works is that you simultaneously search for the place and put the new element there, by repeatedly swapping the new element with the element immediately before it, for as long as the element before it is bigger than it. Once you reach an element that isn't bigger, you've found the correct location and you move on to the next new element.