If I am currently using a Weka decision tree (or other) classifier as follows in my Java code:
// Get training and testing data.
Instances train = new Instances ("from training file");
train.setClassIndex(train.numAttributes() - 1);
Instances test = new Instances ("from testing file");
test.setClassIndex(test.numAttributes() - 1);
// Set classifier.
Object obj = Class.forName("weka.classifiers.trees.J48").newInstance();
Classifier cls = (Classifier) Class.forName("weka.classifiers.trees.J48").cast(obj);
// Set parameters for classifier.
String options = ("-C 0.05 -M 2");
String[] optionsArray = options.split(" ");
cls.setOptions(optionsArray);
// Train classifier.
cls.buildClassifier(train);
Evaluation eval = new Evaluation(train);
// Test trained classifier.
eval.evaluateModel(cls, test);
What happens if I want to use a meta classifier, e.g. bagging, to try to boost results? In Weka's Explorer, if I use bagging with my training and testing data, the parameter string for the classifier is:
weka.classifiers.meta.Bagging -P 100 -S 1 -num-slots 1 -I 10 -W weka.classifiers.trees.J48 -- -C 0.25 -M 2
Does anyone know what a code representation of this might be?
Ideally, I want to store the classes of the classifier and meta classifier in a database table, i.e. so line:
Object obj = Class.forName("weka.classifiers.trees.J48").newInstance();
becomes:
Object obj = Class.forName(classifier.getWekaClass()).newInstance();
And where the parameters could be listed in a database table as well to make them easy to change if I swap over classifiers from J48 to NB.
I believe that this is what I'm looking for but...
http://weka.wikispaces.com/Use+WEKA+in+your+Java+code#Attribute selection-Meta-Classifier