The condition you suggest for when an edge is critical is correct I think. But it's not necessary to actually find a cycle and test each of its edges.
The Kruskal algorithm adds edges in increasing weight order, so the sequence of edge additions can be broken into blocks of equal-weight edge additions. Within each equal-weight block, if there is more than one edge that joins the same two components, then all of these edges are non-critical, because any one of the other edges could be chosen instead. (I say they are all non-critical because we are not actually given a specific MST as part of the input -- if we were then this would identify a particular edge to call non-critical. The edge that Kruskal actually chooses is just an artefact of initial edge ordering or how sorting was implemented.)
But this is not quite sufficient: it might be that after adding all edges of weight 4 or less to the MST, we find that there are 3 weight-5 edges, connecting component pairs (1, 2), (2, 3) and (1, 3). Although no component pair is joined by more than 1 of these 3 edges, we only need (any) 2 of them -- using all 3 would create a cycle.
For each equal-weight block, having weight say w, what we actually need to do is (conceptually) create a new graph in which each component of the MST so far (i.e. using edges having weight < w) is a vertex, and there is an edge between 2 vertices whenever there is a weight-w edge between these components. (This may result in multi-edges.) We then run DFS on each component of this graph to find any cycles, and mark every edge belonging to such a cycle as non-critical. DFS takes O(nEdges) time, so the sum of the DFS times for each block (whose sizes sum to E) will be O(E).
Note that Kruskal's algorithm takes time O(Elog E), not O(E) as you seem to imply -- although people like Bernard Chazelle have gotten close to linear-time MST construction, TTBOMK no one has got there yet! :)