The fundamental question here can be rephrased like this:
How do I control the layers of my plot?
In the 'ggplot2' package, you can do this quickly by splitting each different layer into a different command. Thinking in terms of layers takes a little bit of practice, but it essentially comes down to what you want plotted on top of other things. You build from the background upwards.
Prep: Prepare the sample data. This step is only necessary for this example, because we don't have real data to work with.
# Establish random seed to make data reproducible.
set.seed(1)
# Generate sample data.
df <- data.frame(x=rnorm(500))
df$y = rnorm(500)*0.1 + df$x
# Initialize 'label' and 'size' default values.
df$label <- "a"
df$size <- 2
# Label and size our "special" point.
df$label[50] <- "point"
df$size[50] <- 4
You may notice that I've added a different size to the example just to make the layer difference clearer.
Step 1: Separate your data into layers. Always do this BEFORE you use the 'ggplot' function. Too many people get stuck by trying to do data manipulation from with the 'ggplot' functions. Here, we want to create two layers: one with the "a" labels and one with the "point" labels.
df_layer_1 <- df[df$label=="a",]
df_layer_2 <- df[df$label=="point",]
You could do this with other functions, but I'm just quickly using the data frame matching logic to pull the data.
Step 2: Plot the data as layers. We want to plot all of the "a" data first and then plot all the "point" data.
ggplot() +
geom_point(
data=df_layer_1,
aes(x=x, y=y),
colour="orange",
size=df_layer_1$size) +
geom_point(
data=df_layer_2,
aes(x=x, y=y),
colour="blue",
size=df_layer_2$size)

Notice that the base plot layer ggplot()
has no data assigned. This is important, because we are going to override the data for each layer. Then, we have two separate point geometry layers geom_point(...)
that use their own specifications. The x and y axis will be shared, but we will use different data, colors, and sizes.
It is important to move the colour and size specifications outside of the aes(...)
function, so we can specify these values literally. Otherwise, the 'ggplot' function will usually assign colors and sizes according to the levels found in the data. For instance, if you have size values of 2 and 5 in the data, it will assign a default size to any occurrences of the value 2 and will assign some larger size to any occurrences of the value 5. An 'aes' function specification will not use the values 2 and 5 for the sizes. The same goes for colors. I have exact sizes and colors that I want to use, so I move those arguments into the 'geom_plot' function itself. Also, any specifications in the 'aes' function will be put into the legend, which can be really useless.
Final note: In this example, you could achieve the wanted result in many ways, but it is important to understand how 'ggplot2' layers work in order to get the most out of your 'ggplot' charts. As long as you separate your data into different layers before you call the 'ggplot' functions, you have a lot of control over how things will be graphed on the screen.