I am trying to classify the yard digits on the football field. I am able to detect them (different method) well. I have a minimal bounding box drawn around the tens place digits '1,2,3,4,5'. My goal is to classify them.
Ive been trying to train an SVM classifier on hog features I extract from the training set. A small subset of my training digits are here: http://ssadanand.imgur.com/all/
While training, I visualize my hog descriptors and they look correct. I use a 64X128 training window and other default parameters that OPencv's HOGDescriptor uses.
Once I train my images (50 samples per class, 5 classes), I have a 250X3780 training vector and 1X250 label vector which holds the class label values which I feed to a CvSVM object. Here is where I have a problem.
I tried using the default CvSVMParams() while using CvSVM. Terrible performance when tested on the training set itself!
I tried customizing my CvSVMPARAMS doing this:
CvSVMParams params = CvSVMParams();
params.svm_type = CvSVM::EPS_SVR;
params.kernel_type = CvSVM::POLY;
params.C = 1; params.p = 0.5; params.degree = 1;
and different variations of these parameters and my SVM classifier is terribly even when I test on the training set!
Can somebody help me out with parameterizing my SVM for this 5 class classifier? I don't understand which kernel and what svm type I must use for this problem. Also, how in the world am I supposed to find out the values of c, p, degree for my svm?
I would assume this is an extremely easy classification problem since all my objects are nicely bounded in a box, fairly good resolution, and the classes i.e.: the digits 1,2,3,4,5 are fairly unique in appearance. I don't understand why my SVM is doing so poorly. What am I missing here?