29
votes

I am trying to perform a histogram equalization using OpenCV using the following function

Mat Histogram::Equalization(const Mat& inputImage)
{
    if(inputImage.channels() >= 3)
    {
        vector<Mat> channels;
        split(inputImage,channels);
        Mat B,G,R;

        equalizeHist( channels[0], B );
        equalizeHist( channels[1], G );
        equalizeHist( channels[2], R );
        vector<Mat> combined;
        combined.push_back(B);
        combined.push_back(G);
        combined.push_back(R);
        Mat result;
        merge(combined,result);
        return result;
    }
    return Mat();
}

But when I get the result, there seems to be no difference in input and output image, what am I doing wrong?

Sorry for the bad image quality, "Preprocessed" (left) is histogram equalized, you can see its same as the input (right).

enter image description here

What did miss?

3
Split -> Equalize -> Merge is not the correct approach to perform histogram equalization of color image. It will severely effect the color balance of the image. Bring a object of multiple colors in the image and you will see the color imbalance it will create.sgarizvi

3 Answers

90
votes

Histogram equalization is a non-linear process. Channel splitting and equalizing each channel separately is not the proper way for equalization of contrast. Equalization involves Intensity values of the image not the color components. So for a simple RGB color image, HE should not be applied individually on each channel. Rather, it should be applied such that intensity values are equalized without disturbing the color balance of the image. So, the first step is to convert the color space of the image from RGB into one of the color spaces which separate intensity values from color components. Some of these are:

Convert the image from RGB to one of the above mentioned color spaces. YCbCr is preferred as it is designed for digital images. Perform HE of the intensity plane Y. Convert the image back to RGB.

In your current situation, you are not observing any significant change, because there are only 2 prominent colors in the image. When there are lots of colors in the image, the splitting method will cause color imbalance.

As an example, consider the following images:

Input Image

Input Image

Intensity Image Equalization

Intensity Equalized

Individual Channel Equalization

(Notice the false colors)

Split Equalized

Here is the OpenCV code for histogram equalization of color image using YCbCr color space.

Mat equalizeIntensity(const Mat& inputImage)
{
    if(inputImage.channels() >= 3)
    {
        Mat ycrcb;

        cvtColor(inputImage,ycrcb,CV_BGR2YCrCb);

        vector<Mat> channels;
        split(ycrcb,channels);

        equalizeHist(channels[0], channels[0]);

        Mat result;
        merge(channels,ycrcb);

        cvtColor(ycrcb,result,CV_YCrCb2BGR);

        return result;
    }
    return Mat();
}
14
votes

And the python version, @sga:

import cv2
import os

def hisEqulColor(img):
    ycrcb=cv2.cvtColor(img,cv2.COLOR_BGR2YCR_CB)
    channels=cv2.split(ycrcb)
    print len(channels)
    cv2.equalizeHist(channels[0],channels[0])
    cv2.merge(channels,ycrcb)
    cv2.cvtColor(ycrcb,cv2.COLOR_YCR_CB2BGR,img)
    return img


fname='./your.jpg'
img=cv2.imread(fname)

cv2.imshow('img', img)
img2=hisEqulColor(img)
cv2.imshow('img2',img2)

However this will produce noise in the image (Eg, the left image below) enter image description here

1
votes

I implemented a histogram equalization for BGRA image. I think this function is useful for your goal (but you should ignore the alpha channel).

Mat equalizeBGRA(const Mat& img)
{
Mat res(img.size(), img.type());
Mat imgB(img.size(), CV_8UC1);
Mat imgG(img.size(), CV_8UC1);
Mat imgR(img.size(), CV_8UC1);
Vec4b pixel;

if (img.channels() != 4)
{
    cout << "ERROR: image input is not a BGRA image!" << endl;
    return Mat();
}

for (int r = 0; r < img.rows; r++)
{
    for (int c = 0; c < img.cols; c++)
    {
        pixel = img.at<Vec4b>(r, c);
        imgB.at<uchar>(r, c) = pixel[0];
        imgG.at<uchar>(r, c) = pixel[1];
        imgR.at<uchar>(r, c) = pixel[2];
    }
}

equalizeHist(imgB, imgB);
equalizeHist(imgG, imgG);
equalizeHist(imgR, imgR);

for (int r = 0; r < img.rows; r++)
{
    for (int c = 0; c < img.cols; c++)
    {
        pixel = Vec4b(imgB.at<uchar>(r, c), imgG.at<uchar>(r, c), imgR.at<uchar>(r, c), img.at<Vec4b>(r, c)[3]);
        res.at<Vec4b>(r, c) = pixel;
    }
}

return res;
}