This isn't a homework question, I'm just left unsatisfied with my understanding of interval arithmetic and the implications of exercise 2.16.
The interval arithmetic defined by section 2.14 does not exhibit the properties of normal arithmetic. Two should be equivalent operations, (r1*r2)/(r1 + r2) and 1/(1/r1 + 1/r2), give different results. The exercise asks why this is the case, and if it is possible to construct an interval-arithmetic system in which this is not the case.
The section is addressing the calculation of error margins of resistance of electrical components. I'm not sure I understand what it would mean, in these terms, to multiply and divide intervals. What is the application to multiplying two intervals together?
Is it possible to construct an interval-arithmetic system without the problem in this example?
http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-14.html#%_sec_2.1.4
(define (make-interval a b)
(cons a b))
(define (make-center-width c w)
(make-interval (- c w) (+ c w)))
(define (make-center-percent c p)
(make-center-width c (* c (/ p 100.0))))
(define (lower-bound i)
(car i))
(define (upper-bound i)
(cdr i))
(define (center i)
(/ (+ (upper-bound i) (lower-bound i)) 2))
(define (width i)
(/ (- (upper-bound i) (lower-bound i)) 2))
(define (percent i)
(* 100.0 (/ (width i) (center i))))
(define (add-interval x y)
(make-interval (+ (lower-bound x) (lower-bound y))
(+ (upper-bound x) (upper-bound y))))
(define (sub-interval x y)
(make-interval (- (lower-bound x) (lower-bound y))
(- (upper-bound x) (upper-bound y))))
(define (mul-interval x y)
(let ((p1 (* (lower-bound x) (lower-bound y)))
(p2 (* (lower-bound x) (lower-bound y)))
(p3 (* (lower-bound x) (lower-bound y)))
(p4 (* (lower-bound x) (lower-bound y))))
(make-interval (min p1 p2 p3 p4)
(max p1 p2 p3 p4))))
(define (div-interval x y)
(if (= (width y ) 0)
(error "division by interval with width 0")
(mul-interval x
(make-interval (/ 1.0 (upper-bound y))
(/ 1.0 (lower-bound y))))))
(define (parl1 r1 r2)
(div-interval (mul-interval r1 r2)
(add-interval r1 r2)))
(define (parl2 r1 r2)
(let ((one (make-interval 1 1)))
(div-interval one
(add-interval (div-interval one r1)
(div-interval one r2))))
(define (r1 (make-interval 4.0 3.2)))
(define (r2 (make-interval 3.0 7.2)))
(center (parl1 r1 r2))
(width (parl1 r1 r2))
(newline)
(center (parl2 r1 r2))
(width (parl2 r1 r2))