I'm writing an application that uses an SVM to do classification on some images (specifically these). My Matlab implementation works really well. Using a SIFT bag-of-words approach, I'm able to get near 100% accuracy with a linear kernel.
I need to implement this in C++ for speed/portability reasons, and so I've tried using both libsvm and dlib. I've tried multiple SVM types (c_svm, nu_svm, one_class) and multiple kernels (linear, polynomial, rbf). The best I've been able to achieve is around 50% accuracy - even on the same samples that I've trained on. I've confirmed that my feature generators are working, because when I export my c++-generated features to Matlab and train on those, I'm able to get near-perfect results again.
Is there something magical about Matlab's SVM implementation? Are there any common pitfalls or areas that I might look into that would explain the behavior I'm seeing? I know this is a little vague, but part of the problem is that I don't know where to go. Please let me know in the comments if there is other info I can provide that would be helpful.