I am trying to load a flattened 2D matrix into shared memory, shift the data along x, write back to global memory shifting also along y. The input data is therefore shifted along x and y. What I have:
__global__ void test_shift(float *data_old, float *data_new)
{
uint glob_index = threadIdx.x + blockIdx.y*blockDim.x;
__shared__ float VAR;
__shared__ float VAR2[NUM_THREADS];
// load from global to shared
VAR = data_old[glob_index];
// do some stuff on VAR
if (threadIdx.x < NUM_THREADS - 1)
{
VAR2[threadIdx.x + 1] = VAR; // shift (+1) along x
}
__syncthreads();
// write to global memory
if (threadIdx.y < ny - 1)
{
glob_index = threadIdx.x + (blockIdx.y + 1)*blockDim.x; // redefine glob_index to shift along y (+1)
data_new[glob_index] = VAR2[threadIdx.x];
}
The call to the kernel:
test_shift <<< grid, block >>> (data_old, data_new);
and grid and blocks (blockDim.x is equal to the matrix width, i.e. 64):
dim3 block(NUM_THREADS, 1);
dim3 grid(1, ny);
I am not able to achieve it. Could someone please point out what's wrong with this? Should I use a strided index or an offset?