[Not the OP's intention]: FFT will give you the spectrum (global) for any number of input data points. You cannot have a specific data point (in time) associated with parts (or the full) spectrum.
What you can do instead is use spectrogram and obtain the Short-Time Fourier Transform (STFT). This will give you a NxM
discrete grid of time-frequency FT values (N: FT frequency bins, M: signal time-windows).
By localizing the (overlapping) STFT windows on your data samples of interest you will get N frequency magnitude values, thus the distribution of short-term spectrum estimates as the signal changes in time.
See also the possibly relevant answer here: https://stackoverflow.com/a/12085728/651951
EDIT/UPDATE:
For unevenly spaced data you need to consider the Non-Uniform DFT (and Non-uniform FFT implementations). See the relevant question/answer here https://scicomp.stackexchange.com/q/593
The primary approaches for NFFT or NUFFT, are based on creating a uniform grid through local convolutions/interpolation, running FFT on this and undoing the convolutional effect of the interpolation filter.
You can read more:
- A. Dutt and V. Rokhlin, Fast Fourier transforms for nonequispaced data, SIAM J. Sci. Comput., 14, 1993.
- L. Greengard and J.-Y. Lee, Accelerating the Nonuniform Fast Fourier Transform, SIAM Review, 46 (3), 2004.
- Pippig, M. und Potts, D., Particle Simulation Based on Nonequispaced Fast Fourier Transforms, in: Fast Methods for Long-Range Interactions in Complex Systems, 2011.
For an implementation (with an interface to MATLAB) try NFFT and possibly its parallelized version PNFFT. You may find a nice walk-through on how to set-up and use here.