I need a way to characterize the size of sets of 2-D points, so I can determine whether to render them as individual points in a space or as representative polygons, dependent on the scale of the viewport. I already have an algorithm to calculate the convex hull of the set to produce the representative polygon, but I need a way to characterize its size. One obvious measure is the maximum distance between points on the convex hull, which is the diameter of the set. But I'm really more interested in the size of its cross-section perpendicular to its diameter, to figure out how narrow the bounding polygon is. Is there a simple way to do this, given the sorted list of vertices and and the indices of the furthest points (ideally in Python)?
Or alternatively, is there an easy way to calculate the radii of the minimal area bounding ellipse of a set of points? I have seen some approaches to this problem, but nothing that I can readily convert to Python, so I'm really looking for something that's turnkey.