10
votes

In most descriptions of the TCP PUSH function, it is mentioned that the PUSH feature not only requires the sender to send the data immediately (without waiting for its buffer to fill), but also requires that the data be pushed to receiving application on the receiver side, without being buffered.

What I dont understand is why would TCP buffer data on receiving side at all? After all, TCP segments travel in IP datagrams, which are processed in their entirety (ie IP layer delivers only an entire segment to TCP layer after doing any necessary reassembly of fragments of the IP datagram which carried any given segment). Then, why would the receiving TCP layer wait to deliver this data to its application? One case could be if the application were not reading the data at that point in time. But then, if that is the case, then forcibly pushing the data to the application is anyway not possible. Thus, my question is, why does PUSH feature need to dictate anything about receiver side behavior? Given that an application is reading data at the time a segment arrives, that segment should anyway be delivered to the application straightaway.

Can anyone please help resolve my doubt?

2

2 Answers

7
votes

TCP must buffer received data because it doesn't know when the application is going to actually read the data and it has told the sender that it is willing to receive (the available "window"). All this data gets stored in the "receive window" until such time as it gets read out by the application.

Once the application reads the data, it drops the data from the receive window and increases the size it reports back to the sender with the next ACK. If this window did not exist, then the sender would have to hold off sending until the receiver told it to go ahead which it could not do until the application issued a read. That would add a full round-trip-delay worth of latency to every read call, if not more.

Most modern implementations also make use of this buffer to keep out-of-order packets received so that the sender can retransmit only the lost ones rather than everything after it as well.

The PSH bit is not generally used acted upon. Yes, implementations send it but it typically doesn't change the behavior of the receiving end.

3
votes

Note that, although the other comments are correct (the PSH bit doesn't impact application behaviour much at all in most implementations), it's still used by TCP to determine ACK behaviour. Specifically, when the PSH bit is set, the receiving TCP will ACK immediately instead of using delayed ACKs. Minor detail ;)