While hammar's answer is a correct port of the Haskell code, the definition of _=>_
is too limited compared to ->
, since it doesn't support dependent functions. When adapting code from Haskell, that's a standard necessary change if you want to apply your abstractions to the functions you can write in Agda.
Moreover, by the usual convention of the standard library, this typeclass would be called RawArrow
because to implement it you do not need to provide proofs that your instance satisfies the arrow laws; see RawFunctor and RawMonad for other examples (note: definitions of Functor and Monad are nowhere in sight in the standard library, as of version 0.7).
Here's a more powerful variant, which I wrote and tested with Agda 2.3.2 and the 0.7 standard library (should also work on version 0.6). Note that I only changed the type declaration of RawArrow
's parameter and of _=>_
, the rest is unchanged. When creating fnArrow
, though, not all alternative type declarations work as before.
Warning: I only checked that the code typechecks and that => can be used sensibly, I didn't check whether examples using RawArrow
typecheck.
module RawArrow where
open import Data.Product --actually needed by RawArrow
open import Data.Fin --only for examples
open import Data.Nat --ditto
record RawArrow (A : (S : Set) → (T : {s : S} → Set) → Set) : Set₁ where
field
arr : ∀ {B C} → (B → C) → A B C
_>>>_ : ∀ {B C D} → A B C → A C D → A B D
first : ∀ {B C D} → A B C → A (B × D) (C × D)
second : ∀ {B C D} → A B C → A (D × B) (D × C)
_***_ : ∀ {B C B' C'} → A B C → A B' C' → A (B × B') (C × C')
_&&&_ : ∀ {B C C'} → A B C → A B C' → A B (C × C')
_=>_ : (S : Set) → (T : {s : S} → Set) → Set
A => B = (a : A) -> B {a}
test1 : Set
test1 = ℕ => ℕ
-- With → we can also write:
test2 : Set
test2 = (n : ℕ) → Fin n
-- But also with =>, though it's more cumbersome:
test3 : Set
test3 = ℕ => (λ {n : ℕ} → Fin n)
--Note that since _=>_ uses Set instead of being level-polymorphic, it's still
--somewhat limited. But I won't go the full way.
--fnRawArrow : RawArrow _=>_
-- Alternatively:
fnRawArrow : RawArrow (λ A B → (a : A) → B {a})
fnRawArrow = record
{ arr = λ f → f
; _>>>_ = λ g f x → f (g x)
; first = λ { f (x , y) → (f x , y) }
; second = λ { f (x , y) → (x , f y) }
; _***_ = λ { f g (x , y) → (f x , g y) }
; _&&&_ = λ f g x → (f x , g x)
}