OpenID is designed in a redirect-transparent way. As long as the necessary key/value pairs are preserved at each redirect, either by GET or POST, everything will operate correctly.
The easiest solution to achieve compatibility with consumers that do not work with self-signed certificates is to use a non-encrypted end-point which redirects checkid_immediate
and checkid_setup
messages to an encrypted one.
Doing this in your server code is easier than with web server redirects as the former can more easily deal with POST requests, while also keeping code together. Furthermore, you can use the same end-point to handle all OpenID operations, regardless whether or not it should be served over SSL, as long as proper checks are done.
For example, in PHP, the redirect can be as simple as:
// Redirect OpenID authentication requests to https:// of same URL
// Assuming valid OpenID operation over GET
if (!isset($_SERVER['HTTPS']) &&
($_GET['openid_mode'] == 'checkid_immediate' ||
$_GET['openid_mode'] == 'checkid_setup'))
http_redirect("https://{$_SERVER['HTTP_HOST']}{$_SERVER['REQUEST_URI']}");
As the openid.return_to
value was generated against a plain HTTP end-point, as far as the consumer is concerned, it is only dealing with a non-encrypted server. Assuming proper OpenID 2.0 operation with sessions and nonces, whatever information passed between the consumer and your sever should not reveal exploitable information. Operations between your browser and the OpenID server, which are exploitable (password snooping or session cookie hijacking) are done over an encrypted channel.
Aside from keeping out eavesdroppers, having authentication operations be carried out over SSL allows you to use the secure
HTTP cookie flag. This adds yet another layer of protection for checkid_immediate
operations, should you wish to allow it.