Hi, guys!!!
I want to compute generalized eigendecomposition of the form:
Lf = lambda Af
by using scipy.sparse.linalg.eigs function, but get this error:
/usr/local/lib/python2.7/dist-packages/scipy/linalg/decomp_lu.py:61: RuntimeWarning: Diagonal number 65 is exactly zero. Singular matrix. RuntimeWarning) ** On entry to DLASCL parameter number 4 had an illegal value
I am passing three arguments, a diagonal matrix, a positive semi-definite (PSD) matrix and numeric value K (first K eigenvalues). Matlab's eigs function performs well using the same input parameters, but in SciPy as I have understood, in order to compute with PSD I need to specify sigma parameter as well.
So, my question is: is there a way to avoid setting sigma parameter, as it is in MatLab, or if not, how to pick up sigma value?
Looking forward to getting advices or hints... Thank you in advance!