I'm a CUDA beginner and reading on some thrust tutorials.I write a simple but terribly organized code and try to figure out the acceleration of thrust.(is this idea correct?). I try to add two vectors (with 10000000 int) to another vector, by adding array on cpu and adding device_vector on gpu.
Here is the thing:
#include <iostream>
#include "cuda.h"
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#define N 10000000
int main(void)
{
float time_cpu;
float time_gpu;
int *a = new int[N];
int *b = new int[N];
int *c = new int[N];
for(int i=0;i<N;i++)
{
a[i]=i;
b[i]=i*i;
}
clock_t start_cpu,stop_cpu;
start_cpu=clock();
for(int i=0;i<N;i++)
{
c[i]=a[i]+b[i];
}
stop_cpu=clock();
time_cpu=(double)(stop_cpu-start_cpu)/CLOCKS_PER_SEC*1000;
std::cout<<"Time to generate (CPU):"<<time_cpu<<std::endl;
thrust::device_vector<int> X(N);
thrust::device_vector<int> Y(N);
thrust::device_vector<int> Z(N);
for(int i=0;i<N;i++)
{
X[i]=i;
Y[i]=i*i;
}
cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start,0);
thrust::transform(X.begin(), X.end(),
Y.begin(),
Z.begin(),
thrust::plus<int>());
cudaEventRecord(stop,0);
cudaEventSynchronize(stop);
float elapsedTime;
cudaEventElapsedTime(&elapsedTime,start,stop);
std::cout<<"Time to generate (thrust):"<<elapsedTime<<std::endl;
cudaEventDestroy(start);
cudaEventDestroy(stop);
getchar();
return 0;
}
The CPU results appear really fast, But gpu runs REALLY slow on my machine(i5-2320,4G,GTX 560 Ti), CPU time is about 26,GPU time is around 30! Did I just do the thrust wrong with stupid errors in my code? or was there a deeper reason?
As a C++ rookie, I checked my code over and over and still got a slower time on GPU with thrust, so I did some experiments to show the difference of calculating vectorAdd with five different approaches.
I use windows API QueryPerformanceFrequency()
as unified time measurement method.
Each of the experiments looks like this:
f = large_interger.QuadPart;
QueryPerformanceCounter(&large_interger);
c1 = large_interger.QuadPart;
for(int j=0;j<10;j++)
{
for(int i=0;i<N;i++)//CPU array adding
{
c[i]=a[i]+b[i];
}
}
QueryPerformanceCounter(&large_interger);
c2 = large_interger.QuadPart;
printf("Time to generate (CPU array adding) %lf ms\n", (c2 - c1) * 1000 / f);
and here is my simple __global__
function for GPU array adding:
__global__ void add(int *a, int *b, int *c)
{
int tid=threadIdx.x+blockIdx.x*blockDim.x;
while(tid<N)
{
c[tid]=a[tid]+b[tid];
tid+=blockDim.x*gridDim.x;
}
}
and the function is called as:
for(int j=0;j<10;j++)
{
add<<<(N+127)/128,128>>>(dev_a,dev_b,dev_c);//GPU array adding
}
I add vector a[N] and b[N] to vector c[N] for a loop of 10 times by:
- add array on CPU
- add std::vector on CPU
- add thrust::host_vector on CPU
- add thrust::device_vector on GPU
- add array on GPU. and here is the result
with N=10000000
and I get results:
- CPU array adding 268.992968ms
- CPU std::vector adding 1908.013595ms
- CPU Thrust::host_vector adding 10776.456803ms
- GPU Thrust::device_vector adding 297.156610ms
- GPU array adding 5.210573ms
And this confused me, I'm not familiar with the implementation of template library. Did the performance really differs so much between containers and raw data structures?