First some boring imports:
import Relation.Binary.PropositionalEquality as PE
import Relation.Binary.HeterogeneousEquality as HE
import Algebra
import Data.Nat
import Data.Nat.Properties
open PE
open HE using (_≅_)
open CommutativeSemiring commutativeSemiring using (+-commutativeMonoid)
open CommutativeMonoid +-commutativeMonoid using () renaming (comm to +-comm)
Now suppose that I have a type indexed by, say, the naturals.
postulate Foo : ℕ -> Set
And that I want to prove some equalities about functions operating on this type Foo
. Because agda is not very smart, these will be heterogeneous equalities. A simple example would be
foo : (m n : ℕ) -> Foo (m + n) -> Foo (n + m)
foo m n x rewrite +-comm n m = x
bar : (m n : ℕ) (x : Foo (m + n)) -> foo m n x ≅ x
bar m n x = {! ?0 !}
The goal in bar is
Goal: (foo m n x | n + m | .Data.Nat.Properties.+-comm n m) ≅ x
————————————————————————————————————————————————————————————
x : Foo (m + n)
n : ℕ
m : ℕ
What are these |
s doing in the goal? And how do I even begin to construct a term of this type?
In this case, I can work around the problem by manually doing the substitution with subst
, but that gets really ugly and tedious for larger types and equations.
foo' : (m n : ℕ) -> Foo (m + n) -> Foo (n + m)
foo' m n x = PE.subst Foo (+-comm m n) x
bar' : (m n : ℕ) (x : Foo (m + n)) -> foo' m n x ≅ x
bar' m n x = HE.≡-subst-removable Foo (+-comm m n) x