If an algorithm's run time is Big Theta(f(n)), it is asymptotically bounded above and below by f(n). Big O is the same except that the bound is only above.
Intuitively, Big O(f(n)) says "we can be sure that, ignoring constant factors and terms, the run time never exceeds f(n)." In rough words, if you think of run time as "bad", then Big O is a worst case. Big Theta(f(n)) says "we can be sure that, ignoring constant factors and terms, the run time always varies as f(n)." In other words, Big Theta is a known tight bound: it's both worst case and best case.
A final try at intuition: Big O is "one-sided." O(n) run time is also O(n^2) and O(2^n). This is not true with Big Theta. If you have an algorithm run time that's O(n), then you already have a proof that it's not Big Theta(n^2). It may or may not be Big Theta(n)
An example is comparison sorting. Information theory tells us sorting requires at least ceiling(n log n) comparisons, and we have actually invented O(n log n) algorithms (where n is number of comparisons), so sorting comparisons are Big Theta(n log n).