251
votes

I'm trying to use matplotlib to read in an RGB image and convert it to grayscale.

In matlab I use this:

img = rgb2gray(imread('image.png'));

In the matplotlib tutorial they don't cover it. They just read in the image

import matplotlib.image as mpimg
img = mpimg.imread('image.png')

and then they slice the array, but that's not the same thing as converting RGB to grayscale from what I understand.

lum_img = img[:,:,0]

I find it hard to believe that numpy or matplotlib doesn't have a built-in function to convert from rgb to gray. Isn't this a common operation in image processing?

I wrote a very simple function that works with the image imported using imread in 5 minutes. It's horribly inefficient, but that's why I was hoping for a professional implementation built-in.

Sebastian has improved my function, but I'm still hoping to find the built-in one.

matlab's (NTSC/PAL) implementation:

import numpy as np

def rgb2gray(rgb):

    r, g, b = rgb[:,:,0], rgb[:,:,1], rgb[:,:,2]
    gray = 0.2989 * r + 0.5870 * g + 0.1140 * b

    return gray
13
Note that you can write the same thing as your rgb2gray function simply as: gray = np.mean(rgb, -1). Maybe rgb[...,:3] there if it is actually rgba.seberg
hmm, gray = np.mean(rgb, -1) works fine. thanks. Is there any reason not to use this? Why would I use the solutions in the answers below instead?waspinator
The grayscale wikipedia page says the method of converting RGB to grayscale is not unique, but gives a commonly used formulas based on luminance. It is quite different than np.mean(rgb, -1).unutbu
so I guess I want Matlab's version? 0.2989 * R + 0.5870 * G + 0.1140 * B I'm assuming that it's the standard way of doing it.waspinator
Shouldn't be 0.2990 * R + 0.5870 * G + 0.1140 * B instead? The weight sum should equal to 1 and not 0.9999. Check here: en.wikipedia.org/wiki/GrayscaleAlexandre Cartaxo

13 Answers

364
votes

How about doing it with Pillow:

from PIL import Image
img = Image.open('image.png').convert('LA')
img.save('greyscale.png')

Using matplotlib and the formula

Y' = 0.2989 R + 0.5870 G + 0.1140 B 

you could do:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg

def rgb2gray(rgb):
    return np.dot(rgb[...,:3], [0.2989, 0.5870, 0.1140])

img = mpimg.imread('image.png')     
gray = rgb2gray(img)    
plt.imshow(gray, cmap=plt.get_cmap('gray'), vmin=0, vmax=1)
plt.show()
85
votes

You can also use scikit-image, which provides some functions to convert an image in ndarray, like rgb2gray.

from skimage import color
from skimage import io

img = color.rgb2gray(io.imread('image.png'))

Notes: The weights used in this conversion are calibrated for contemporary CRT phosphors: Y = 0.2125 R + 0.7154 G + 0.0721 B

Alternatively, you can read image in grayscale by:

from skimage import io
img = io.imread('image.png', as_gray=True)
75
votes

Three of the suggested methods were tested for speed with 1000 RGBA PNG images (224 x 256 pixels) running with Python 3.5 on Ubuntu 16.04 LTS (Xeon E5 2670 with SSD).

Average run times

pil : 1.037 seconds

scipy: 1.040 seconds

sk : 2.120 seconds

PIL and SciPy gave identical numpy arrays (ranging from 0 to 255). SkImage gives arrays from 0 to 1. In addition the colors are converted slightly different, see the example from the CUB-200 dataset.

SkImage: SkImage

PIL : PIL

SciPy : SciPy

Original: Original

Diff : enter image description here

Code

  1. Performance

    run_times = dict(sk=list(), pil=list(), scipy=list())
    for t in range(100):
        start_time = time.time()
        for i in range(1000):
            z = random.choice(filenames_png)
            img = skimage.color.rgb2gray(skimage.io.imread(z))
        run_times['sk'].append(time.time() - start_time)
    
    
    start_time = time.time()
    for i in range(1000):
        z = random.choice(filenames_png)
        img = np.array(Image.open(z).convert('L'))
    run_times['pil'].append(time.time() - start_time)
    
    start_time = time.time()
    for i in range(1000):
        z = random.choice(filenames_png)
        img = scipy.ndimage.imread(z, mode='L')
    run_times['scipy'].append(time.time() - start_time)
    

    for k, v in run_times.items(): print('{:5}: {:0.3f} seconds'.format(k, sum(v) / len(v)))

  2. Output
    z = 'Cardinal_0007_3025810472.jpg'
    img1 = skimage.color.rgb2gray(skimage.io.imread(z)) * 255
    IPython.display.display(PIL.Image.fromarray(img1).convert('RGB'))
    img2 = np.array(Image.open(z).convert('L'))
    IPython.display.display(PIL.Image.fromarray(img2))
    img3 = scipy.ndimage.imread(z, mode='L')
    IPython.display.display(PIL.Image.fromarray(img3))
    
  3. Comparison
    img_diff = np.ndarray(shape=img1.shape, dtype='float32')
    img_diff.fill(128)
    img_diff += (img1 - img3)
    img_diff -= img_diff.min()
    img_diff *= (255/img_diff.max())
    IPython.display.display(PIL.Image.fromarray(img_diff).convert('RGB'))
    
  4. Imports
    import skimage.color
    import skimage.io
    import random
    import time
    from PIL import Image
    import numpy as np
    import scipy.ndimage
    import IPython.display
    
  5. Versions
    skimage.version
    0.13.0
    scipy.version
    0.19.1
    np.version
    1.13.1
    
36
votes

You can always read the image file as grayscale right from the beginning using imread from OpenCV:

img = cv2.imread('messi5.jpg', 0)

Furthermore, in case you want to read the image as RGB, do some processing and then convert to Gray Scale you could use cvtcolor from OpenCV:

gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
27
votes

The fastest and current way is to use Pillow, installed via pip install Pillow.

The code is then:

from PIL import Image
img = Image.open('input_file.jpg').convert('L')
img.save('output_file.jpg')
12
votes

The tutorial is cheating because it is starting with a greyscale image encoded in RGB, so they are just slicing a single color channel and treating it as greyscale. The basic steps you need to do are to transform from the RGB colorspace to a colorspace that encodes with something approximating the luma/chroma model, such as YUV/YIQ or HSL/HSV, then slice off the luma-like channel and use that as your greyscale image. matplotlib does not appear to provide a mechanism to convert to YUV/YIQ, but it does let you convert to HSV.

Try using matplotlib.colors.rgb_to_hsv(img) then slicing the last value (V) from the array for your grayscale. It's not quite the same as a luma value, but it means you can do it all in matplotlib.

Background:

Alternatively, you could use PIL or the builtin colorsys.rgb_to_yiq() to convert to a colorspace with a true luma value. You could also go all in and roll your own luma-only converter, though that's probably overkill.

10
votes

Using this formula

Y' = 0.299 R + 0.587 G + 0.114 B 

We can do

import imageio
import numpy as np
import matplotlib.pyplot as plt

pic = imageio.imread('(image)')
gray = lambda rgb : np.dot(rgb[... , :3] , [0.299 , 0.587, 0.114]) 
gray = gray(pic)  
plt.imshow(gray, cmap = plt.get_cmap(name = 'gray'))

However, the GIMP converting color to grayscale image software has three algorithms to do the task.

8
votes

you could do:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg

def rgb_to_gray(img):
        grayImage = np.zeros(img.shape)
        R = np.array(img[:, :, 0])
        G = np.array(img[:, :, 1])
        B = np.array(img[:, :, 2])

        R = (R *.299)
        G = (G *.587)
        B = (B *.114)

        Avg = (R+G+B)
        grayImage = img

        for i in range(3):
           grayImage[:,:,i] = Avg

        return grayImage       

image = mpimg.imread("your_image.png")   
grayImage = rgb_to_gray(image)  
plt.imshow(grayImage)
plt.show()
8
votes

If you're using NumPy/SciPy already you may as well use:

scipy.ndimage.imread(file_name, mode='L')

5
votes

Use img.Convert(), supports “L”, “RGB” and “CMYK.” mode

import numpy as np
from PIL import Image

img = Image.open("IMG/center_2018_02_03_00_34_32_784.jpg")
img.convert('L')

print np.array(img)

Output:

[[135 123 134 ...,  30   3  14]
 [137 130 137 ...,   9  20  13]
 [170 177 183 ...,  14  10 250]
 ..., 
 [112  99  91 ...,  90  88  80]
 [ 95 103 111 ..., 102  85 103]
 [112  96  86 ..., 182 148 114]]
3
votes

I came to this question via Google, searching for a way to convert an already loaded image to grayscale.

Here is a way to do it with SciPy:

import scipy.misc
import scipy.ndimage

# Load an example image
# Use scipy.ndimage.imread(file_name, mode='L') if you have your own
img = scipy.misc.face()

# Convert the image
R = img[:, :, 0]
G = img[:, :, 1]
B = img[:, :, 2]
img_gray = R * 299. / 1000 + G * 587. / 1000 + B * 114. / 1000

# Show the image
scipy.misc.imshow(img_gray)
0
votes

With OpenCV its simple:

import cv2

im = cv2.imread("flower.jpg")

# To Grayscale
im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
cv2.imwrite("grayscale.jpg", im)

# To Black & White
im = cv2.threshold(im, 127, 255, cv2.THRESH_BINARY)[1]
cv2.imwrite("black-white.jpg", im)

enter image description here

-3
votes
image=myCamera.getImage().crop(xx,xx,xx,xx).scale(xx,xx).greyscale()

You can use greyscale() directly for the transformation.