It was worth the effort for me anyways, so I'll propose the most difficult and least elegant solution here for whoever may be interested. My solution is to implement a multi-threaded min-max in one pass algorithm in C++, and use this to create an Python extension module. This effort requires a bit of overhead for learning how to use the Python and NumPy C/C++ APIs, and here I will show the code and give some small explanations and references for whoever wishes to go down this path.
Multi-threaded Min/Max
There is nothing too interesting here. The array is broken into chunks of size length / workers
. The min/max is calculated for each chunk in a future
, which are then scanned for the global min/max.
// mt_np.cc
//
// multi-threaded min/max algorithm
#include <algorithm>
#include <future>
#include <vector>
namespace mt_np {
/*
* Get {min,max} in interval [begin,end)
*/
template <typename T> std::pair<T, T> min_max(T *begin, T *end) {
T min{*begin};
T max{*begin};
while (++begin < end) {
if (*begin < min) {
min = *begin;
continue;
} else if (*begin > max) {
max = *begin;
}
}
return {min, max};
}
/*
* get {min,max} in interval [begin,end) using #workers for concurrency
*/
template <typename T>
std::pair<T, T> min_max_mt(T *begin, T *end, int workers) {
const long int chunk_size = std::max((end - begin) / workers, 1l);
std::vector<std::future<std::pair<T, T>>> min_maxes;
// fire up the workers
while (begin < end) {
T *next = std::min(end, begin + chunk_size);
min_maxes.push_back(std::async(min_max<T>, begin, next));
begin = next;
}
// retrieve the results
auto min_max_it = min_maxes.begin();
auto v{min_max_it->get()};
T min{v.first};
T max{v.second};
while (++min_max_it != min_maxes.end()) {
v = min_max_it->get();
min = std::min(min, v.first);
max = std::max(max, v.second);
}
return {min, max};
}
}; // namespace mt_np
The Python Extension Module
Here is where things start getting ugly... One way to use C++ code in Python is to implement an extension module. This module can be built and installed using the distutils.core
standard module. A complete description of what this entails is covered in the Python documentation: https://docs.python.org/3/extending/extending.html. NOTE: there are certainly other ways to get similar results, to quote https://docs.python.org/3/extending/index.html#extending-index:
This guide only covers the basic tools for creating extensions provided as part of this version of CPython. Third party tools like Cython, cffi, SWIG and Numba offer both simpler and more sophisticated approaches to creating C and C++ extensions for Python.
Essentially, this route is probably more academic than practical. With that being said, what I did next was, sticking pretty close to the tutorial, create a module file. This is essentially boilerplate for distutils to know what to do with your code and create a Python module out of it. Before doing any of this it is probably wise to create a Python virtual environment so you don't pollute your system packages (see https://docs.python.org/3/library/venv.html#module-venv).
Here is the module file:
// mt_np_forpy.cc
//
// C++ module implementation for multi-threaded min/max for np
#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
#include <python3.6/numpy/arrayobject.h>
#include "mt_np.h"
#include <cstdint>
#include <iostream>
using namespace std;
/*
* check:
* shape
* stride
* data_type
* byteorder
* alignment
*/
static bool check_array(PyArrayObject *arr) {
if (PyArray_NDIM(arr) != 1) {
PyErr_SetString(PyExc_RuntimeError, "Wrong shape, require (1,n)");
return false;
}
if (PyArray_STRIDES(arr)[0] != 8) {
PyErr_SetString(PyExc_RuntimeError, "Expected stride of 8");
return false;
}
PyArray_Descr *descr = PyArray_DESCR(arr);
if (descr->type != NPY_LONGLTR && descr->type != NPY_DOUBLELTR) {
PyErr_SetString(PyExc_RuntimeError, "Wrong type, require l or d");
return false;
}
if (descr->byteorder != '=') {
PyErr_SetString(PyExc_RuntimeError, "Expected native byteorder");
return false;
}
if (descr->alignment != 8) {
cerr << "alignment: " << descr->alignment << endl;
PyErr_SetString(PyExc_RuntimeError, "Require proper alignement");
return false;
}
return true;
}
template <typename T>
static PyObject *mt_np_minmax_dispatch(PyArrayObject *arr) {
npy_intp size = PyArray_SHAPE(arr)[0];
T *begin = (T *)PyArray_DATA(arr);
auto minmax =
mt_np::min_max_mt(begin, begin + size, thread::hardware_concurrency());
return Py_BuildValue("(L,L)", minmax.first, minmax.second);
}
static PyObject *mt_np_minmax(PyObject *self, PyObject *args) {
PyArrayObject *arr;
if (!PyArg_ParseTuple(args, "O", &arr))
return NULL;
if (!check_array(arr))
return NULL;
switch (PyArray_DESCR(arr)->type) {
case NPY_LONGLTR: {
return mt_np_minmax_dispatch<int64_t>(arr);
} break;
case NPY_DOUBLELTR: {
return mt_np_minmax_dispatch<double>(arr);
} break;
default: {
PyErr_SetString(PyExc_RuntimeError, "Unknown error");
return NULL;
}
}
}
static PyObject *get_concurrency(PyObject *self, PyObject *args) {
return Py_BuildValue("I", thread::hardware_concurrency());
}
static PyMethodDef mt_np_Methods[] = {
{"mt_np_minmax", mt_np_minmax, METH_VARARGS, "multi-threaded np min/max"},
{"get_concurrency", get_concurrency, METH_VARARGS,
"retrieve thread::hardware_concurrency()"},
{NULL, NULL, 0, NULL} /* sentinel */
};
static struct PyModuleDef mt_np_module = {PyModuleDef_HEAD_INIT, "mt_np", NULL,
-1, mt_np_Methods};
PyMODINIT_FUNC PyInit_mt_np() { return PyModule_Create(&mt_np_module); }
In this file there is a significant use of the Python as well as the NumPy API, for more information consult: https://docs.python.org/3/c-api/arg.html#c.PyArg_ParseTuple, and for NumPy: https://docs.scipy.org/doc/numpy/reference/c-api.array.html.
Installing the Module
The next thing to do is to utilize distutils to install the module. This requires a setup file:
# setup.py
from distutils.core import setup,Extension
module = Extension('mt_np', sources = ['mt_np_module.cc'])
setup (name = 'mt_np',
version = '1.0',
description = 'multi-threaded min/max for np arrays',
ext_modules = [module])
To finally install the module, execute python3 setup.py install
from your virtual environment.
Testing the Module
Finally, we can test to see if the C++ implementation actually outperforms naive use of NumPy. To do so, here is a simple test script:
# timing.py
# compare numpy min/max vs multi-threaded min/max
import numpy as np
import mt_np
import timeit
def normal_min_max(X):
return (np.min(X),np.max(X))
print(mt_np.get_concurrency())
for ssize in np.logspace(3,8,6):
size = int(ssize)
print('********************')
print('sample size:', size)
print('********************')
samples = np.random.normal(0,50,(2,size))
for sample in samples:
print('np:', timeit.timeit('normal_min_max(sample)',
globals=globals(),number=10))
print('mt:', timeit.timeit('mt_np.mt_np_minmax(sample)',
globals=globals(),number=10))
Here are the results I got from doing all this:
8
********************
sample size: 1000
********************
np: 0.00012079699808964506
mt: 0.002468645994667895
np: 0.00011947099847020581
mt: 0.0020772050047526136
********************
sample size: 10000
********************
np: 0.00024697799381101504
mt: 0.002037393998762127
np: 0.0002713389985729009
mt: 0.0020942929986631498
********************
sample size: 100000
********************
np: 0.0007130410012905486
mt: 0.0019842900001094677
np: 0.0007540129954577424
mt: 0.0029724110063398257
********************
sample size: 1000000
********************
np: 0.0094779249993735
mt: 0.007134920000680722
np: 0.009129883001151029
mt: 0.012836456997320056
********************
sample size: 10000000
********************
np: 0.09471094200125663
mt: 0.0453535050037317
np: 0.09436299200024223
mt: 0.04188535599678289
********************
sample size: 100000000
********************
np: 0.9537652180006262
mt: 0.3957935369980987
np: 0.9624398809974082
mt: 0.4019058070043684
These are far less encouraging than the results indicate earlier in the thread, which indicated somewhere around 3.5x speedup, and didn't incorporate multi-threading. The results I achieved are somewhat reasonable, I would expect that the overhead of threading and would dominate the time until the arrays got very large, at which point the performance increase would start to approach std::thread::hardware_concurrency
x increase.
Conclusion
There is certainly room for application specific optimizations to some NumPy code, it would seem, in particular with regards to multi-threading. Whether or not it is worth the effort is not clear to me, but it certainly seems like a good exercise (or something). I think that perhaps learning some of those "third party tools" like Cython may be a better use of time, but who knows.
amax
andamin
– mgilsonminmax
to the library in issue ( github.com/numpy/numpy/issues/9836 ). – jakirkham