I want to prepare data for unsupervised learning with random forest. The procedure is as follows:
- Take data and add attribute 'class' with value 1 to all examples
- Generate synthetic data from original data:
- while you don't have the same number of examples as in original data build examples:
- sample new attribute value from all values of that attribute in original data
- do that for all attributes and combine them into new example
- while you don't have the same number of examples as in original data build examples:
- assign to attribute 'class' of synthetic data value 2
- bind both data together
At the end it look like this:
... Class
|1
Original |1
Data |1
|1
--------------
|2
Synthetic |2
Data |2
|2
My R code looks like this:
library(gtools) #for smartbind()
sample1 <- function(X) { sample(X, replace=T) }
g1 <- function(dat) { apply(dat,2,sample1) }
data$class <- rep(1, times=nrow(data)) #add attribute 'class' with value 1
synthData<-data.frame(g1(data[,1:ncol(data)])) #generate synthetic data with sampling from data
synthData$class <- rep(2, times=nrow(synthData)) #attribute 'class' is 2
colnames(synthData) <- colnames(data)
newData <- smartbind(data, synthData) #bind the data together
It's probably obvious that I'm really new to R, but it works - there is just one problem: types of attributes in synthetic data are not the same as in original data. If in original they are nums, now they become factors. How could I preserve same type while generating synthetic data?
Thank you!
Data1 (nums become factors):
structure(list(V2 = c(1.51793, 1.51711, 1.51645, 1.51916, 1.51131 ), V3 = c(13.21, 12.89, 13.44, 14.15, 13.69), V4 = c(3.48, 3.62, 3.61, 0, 3.2), V5 = c(1.41, 1.57, 1.54, 2.09, 1.81), V6 = c(72.64, 72.96, 72.39, 72.74, 72.81), V7 = c(0.59, 0.61, 0.66, 0, 1.76 ), V8 = c(8.43, 8.11, 8.03, 10.88, 5.43), V9 = c(0, 0, 0, 0, 1.19), V10 = c(0, 0, 0, 0, 0), realClass = structure(c(1L, 2L, 2L, 5L, 6L), .Label = c("1", "2", "3", "5", "6", "7"), class = "factor")), .Names = c("V2", "V3", "V4", "V5", "V6", "V7", "V8", "V9", "V10", "realClass"), row.names = c(27L, 138L, 77L, 183L, 186L), class = "data.frame")
Data2 (factors become chrs):
structure(list(realClass = structure(c(2L, 2L, 2L, 1L, 2L), .Label = c("e", "p"), class = "factor"), V2 = structure(c(6L, 3L, 4L, 6L, 6L), .Label = c("b", "c", "f", "k", "s", "x"), class = "factor"), V3 = structure(c(4L, 4L, 3L, 1L, 1L), .Label = c("f", "g", "s", "y"), class = "factor"), V4 = structure(c(5L, 5L, 5L, 3L, 4L), .Label = c("b", "c", "e", "g", "n", "p", "r", "u", "w", "y"), class = "factor"), V5 = structure(c(1L, 1L, 1L, 2L, 1L), .Label = c("f", "t" ), class = "factor"), V6 = structure(c(3L, 9L, 3L, 6L, 3L ), .Label = c("a", "c", "f", "l", "m", "n", "p", "s", "y" ), class = "factor"), V7 = structure(c(2L, 2L, 2L, 2L, 2L ), .Label = c("a", "f"), class = "factor"), V8 = structure(c(1L, 1L, 1L, 1L, 1L), .Label = c("c", "w"), class = "factor"), V9 = structure(c(2L, 2L, 2L, 1L, 1L), .Label = c("b", "n" ), class = "factor"), V10 = structure(c(1L, 1L, 1L, 10L, 4L), .Label = c("b", "e", "g", "h", "k", "n", "o", "p", "r", "u", "w", "y"), class = "factor"), V11 = structure(c(2L, 2L, 2L, 2L, 1L), .Label = c("e", "t"), class = "factor"), V12 = structure(c(NA, NA, NA, 1L, 1L), .Label = c("b", "c", "e", "r"), class = "factor"), V13 = structure(c(3L, 2L, 3L, 3L, 2L), .Label = c("f", "k", "s", "y"), class = "factor"), V14 = structure(c(3L, 3L, 2L, 3L, 2L), .Label = c("f", "k", "s", "y"), class = "factor"), V15 = structure(c(7L, 8L, 7L, 4L, 7L), .Label = c("b", "c", "e", "g", "n", "o", "p", "w", "y"), class = "factor"), V16 = structure(c(7L, 7L, 8L, 4L, 1L), .Label = c("b", "c", "e", "g", "n", "o", "p", "w", "y" ), class = "factor"), V17 = structure(c(1L, 1L, 1L, 1L, 1L ), .Label = "p", class = "factor"), V18 = structure(c(3L, 3L, 3L, 3L, 3L), .Label = c("n", "o", "w", "y"), class = "factor"), V19 = structure(c(2L, 2L, 2L, 2L, 2L), .Label = c("n", "o", "t"), class = "factor"), V20 = structure(c(1L, 1L, 1L, 5L, 3L), .Label = c("e", "f", "l", "n", "p"), class = "factor"), V21 = structure(c(8L, 8L, 8L, 4L, 2L), .Label = c("b", "h", "k", "n", "o", "r", "u", "w", "y"), class = "factor"), V22 = structure(c(5L, 5L, 5L, 5L, 6L), .Label = c("a", "c", "n", "s", "v", "y"), class = "factor"), V23 = structure(c(3L, 3L, 5L, 1L, 2L), .Label = c("d", "g", "l", "m", "p", "u", "w"), class = "factor")), .Names = c("realClass", "V2", "V3", "V4", "V5", "V6", "V7", "V8", "V9", "V10", "V11", "V12", "V13", "V14", "V15", "V16", "V17", "V18", "V19", "V20", "V21", "V22", "V23"), row.names = c(4105L, 6207L, 6696L, 2736L, 3756L), class = "data.frame")
numcol <- as.numeric(as.character(factcol))
- dickoastr(data)
or betterdput(data)
). - dickoa