I want to do a linear regression in R using the lm()
function. My data is an annual time series with one field for year (22 years) and another for state (50 states). I want to fit a regression for each state so that at the end I have a vector of lm responses. I can imagine doing for loop for each state then doing the regression inside the loop and adding the results of each regression to a vector. That does not seem very R-like, however. In SAS I would do a 'by' statement and in SQL I would do a 'group by'. What's the R way of doing this?
10 Answers
Here's one way using the lme4
package.
library(lme4)
d <- data.frame(state=rep(c('NY', 'CA'), c(10, 10)),
year=rep(1:10, 2),
response=c(rnorm(10), rnorm(10)))
xyplot(response ~ year, groups=state, data=d, type='l')
fits <- lmList(response ~ year | state, data=d)
fits
#------------
Call: lmList(formula = response ~ year | state, data = d)
Coefficients:
(Intercept) year
CA -1.34420990 0.17139963
NY 0.00196176 -0.01852429
Degrees of freedom: 20 total; 16 residual
Residual standard error: 0.8201316
Here's an approach using the plyr package:
d <- data.frame(
state = rep(c('NY', 'CA'), 10),
year = rep(1:10, 2),
response= rnorm(20)
)
library(plyr)
# Break up d by state, then fit the specified model to each piece and
# return a list
models <- dlply(d, "state", function(df)
lm(response ~ year, data = df))
# Apply coef to each model and return a data frame
ldply(models, coef)
# Print the summary of each model
l_ply(models, summary, .print = TRUE)
Since 2009, dplyr
has been released which actually provides a very nice way to do this kind of grouping, closely resembling what SAS does.
library(dplyr)
d <- data.frame(state=rep(c('NY', 'CA'), c(10, 10)),
year=rep(1:10, 2),
response=c(rnorm(10), rnorm(10)))
fitted_models = d %>% group_by(state) %>% do(model = lm(response ~ year, data = .))
# Source: local data frame [2 x 2]
# Groups: <by row>
#
# state model
# (fctr) (chr)
# 1 CA <S3:lm>
# 2 NY <S3:lm>
fitted_models$model
# [[1]]
#
# Call:
# lm(formula = response ~ year, data = .)
#
# Coefficients:
# (Intercept) year
# -0.06354 0.02677
#
#
# [[2]]
#
# Call:
# lm(formula = response ~ year, data = .)
#
# Coefficients:
# (Intercept) year
# -0.35136 0.09385
To retrieve the coefficients and Rsquared/p.value, one can use the broom
package. This package provides:
three S3 generics: tidy, which summarizes a model's statistical findings such as coefficients of a regression; augment, which adds columns to the original data such as predictions, residuals and cluster assignments; and glance, which provides a one-row summary of model-level statistics.
library(broom)
fitted_models %>% tidy(model)
# Source: local data frame [4 x 6]
# Groups: state [2]
#
# state term estimate std.error statistic p.value
# (fctr) (chr) (dbl) (dbl) (dbl) (dbl)
# 1 CA (Intercept) -0.06354035 0.83863054 -0.0757668 0.9414651
# 2 CA year 0.02677048 0.13515755 0.1980687 0.8479318
# 3 NY (Intercept) -0.35135766 0.60100314 -0.5846187 0.5749166
# 4 NY year 0.09385309 0.09686043 0.9689519 0.3609470
fitted_models %>% glance(model)
# Source: local data frame [2 x 12]
# Groups: state [2]
#
# state r.squared adj.r.squared sigma statistic p.value df
# (fctr) (dbl) (dbl) (dbl) (dbl) (dbl) (int)
# 1 CA 0.004879969 -0.119510035 1.2276294 0.0392312 0.8479318 2
# 2 NY 0.105032068 -0.006838924 0.8797785 0.9388678 0.3609470 2
# Variables not shown: logLik (dbl), AIC (dbl), BIC (dbl), deviance (dbl),
# df.residual (int)
fitted_models %>% augment(model)
# Source: local data frame [20 x 10]
# Groups: state [2]
#
# state response year .fitted .se.fit .resid .hat
# (fctr) (dbl) (int) (dbl) (dbl) (dbl) (dbl)
# 1 CA 0.4547765 1 -0.036769875 0.7215439 0.4915464 0.3454545
# 2 CA 0.1217003 2 -0.009999399 0.6119518 0.1316997 0.2484848
# 3 CA -0.6153836 3 0.016771076 0.5146646 -0.6321546 0.1757576
# 4 CA -0.9978060 4 0.043541551 0.4379605 -1.0413476 0.1272727
# 5 CA 2.1385614 5 0.070312027 0.3940486 2.0682494 0.1030303
# 6 CA -0.3924598 6 0.097082502 0.3940486 -0.4895423 0.1030303
# 7 CA -0.5918738 7 0.123852977 0.4379605 -0.7157268 0.1272727
# 8 CA 0.4671346 8 0.150623453 0.5146646 0.3165112 0.1757576
# 9 CA -1.4958726 9 0.177393928 0.6119518 -1.6732666 0.2484848
# 10 CA 1.7481956 10 0.204164404 0.7215439 1.5440312 0.3454545
# 11 NY -0.6285230 1 -0.257504572 0.5170932 -0.3710185 0.3454545
# 12 NY 1.0566099 2 -0.163651479 0.4385542 1.2202614 0.2484848
# 13 NY -0.5274693 3 -0.069798386 0.3688335 -0.4576709 0.1757576
# 14 NY 0.6097983 4 0.024054706 0.3138637 0.5857436 0.1272727
# 15 NY -1.5511940 5 0.117907799 0.2823942 -1.6691018 0.1030303
# 16 NY 0.7440243 6 0.211760892 0.2823942 0.5322634 0.1030303
# 17 NY 0.1054719 7 0.305613984 0.3138637 -0.2001421 0.1272727
# 18 NY 0.7513057 8 0.399467077 0.3688335 0.3518387 0.1757576
# 19 NY -0.1271655 9 0.493320170 0.4385542 -0.6204857 0.2484848
# 20 NY 1.2154852 10 0.587173262 0.5170932 0.6283119 0.3454545
# Variables not shown: .sigma (dbl), .cooksd (dbl), .std.resid (dbl)
In my opinion is a mixed linear model a better approach for this kind of data. The code below given in the fixed effect the overall trend. The random effects indicate how the trend for each individual state differ from the global trend. The correlation structure takes the temporal autocorrelation into account. Have a look at Pinheiro & Bates (Mixed Effects Models in S and S-Plus).
library(nlme)
lme(response ~ year, random = ~year|state, correlation = corAR1(~year))
A nice solution using data.table
was posted here in CrossValidated by @Zach.
I'd just add that it is possible to obtain iteratively also the regression coefficient r^2:
## make fake data
library(data.table)
set.seed(1)
dat <- data.table(x=runif(100), y=runif(100), grp=rep(1:2,50))
##calculate the regression coefficient r^2
dat[,summary(lm(y~x))$r.squared,by=grp]
grp V1
1: 1 0.01465726
2: 2 0.02256595
as well as all the other output from summary(lm)
:
dat[,list(r2=summary(lm(y~x))$r.squared , f=summary(lm(y~x))$fstatistic[1] ),by=grp]
grp r2 f
1: 1 0.01465726 0.714014
2: 2 0.02256595 1.108173
I think it's worthwhile to add the purrr::map
approach to this problem.
library(tidyverse)
d <- data.frame(state=rep(c('NY', 'CA'), c(10, 10)),
year=rep(1:10, 2),
response=c(rnorm(10), rnorm(10)))
d %>%
group_by(state) %>%
nest() %>%
mutate(model = map(data, ~lm(response ~ year, data = .)))
See @Paul Hiemstra's answer for further ideas on using the broom
package with these results.
I now my answer comes a bit late, but I was looking for a similar functionality. It would seem the built-in function 'by' in R can also do the grouping easily:
?by contains the following example, which fits per group and extracts the coefficients with sapply:
require(stats)
## now suppose we want to extract the coefficients by group
tmp <- with(warpbreaks,
by(warpbreaks, tension,
function(x) lm(breaks ~ wool, data = x)))
sapply(tmp, coef)
## make fake data
ngroups <- 2
group <- 1:ngroups
nobs <- 100
dta <- data.frame(group=rep(group,each=nobs),y=rnorm(nobs*ngroups),x=runif(nobs*ngroups))
head(dta)
#--------------------
group y x
1 1 0.6482007 0.5429575
2 1 -0.4637118 0.7052843
3 1 -0.5129840 0.7312955
4 1 -0.6612649 0.9028034
5 1 -0.5197448 0.1661308
6 1 0.4240346 0.8944253
#------------
## function to extract the results of one model
foo <- function(z) {
## coef and se in a data frame
mr <- data.frame(coef(summary(lm(y~x,data=z))))
## put row names (predictors/indep variables)
mr$predictor <- rownames(mr)
mr
}
## see that it works
foo(subset(dta,group==1))
#=========
Estimate Std..Error t.value Pr...t.. predictor
(Intercept) 0.2176477 0.1919140 1.134090 0.2595235 (Intercept)
x -0.3669890 0.3321875 -1.104765 0.2719666 x
#----------
## one option: use command by
res <- by(dta,dta$group,foo)
res
#=========
dta$group: 1
Estimate Std..Error t.value Pr...t.. predictor
(Intercept) 0.2176477 0.1919140 1.134090 0.2595235 (Intercept)
x -0.3669890 0.3321875 -1.104765 0.2719666 x
------------------------------------------------------------
dta$group: 2
Estimate Std..Error t.value Pr...t.. predictor
(Intercept) -0.04039422 0.1682335 -0.2401081 0.8107480 (Intercept)
x 0.06286456 0.3020321 0.2081387 0.8355526 x
## using package plyr is better
library(plyr)
res <- ddply(dta,"group",foo)
res
#----------
group Estimate Std..Error t.value Pr...t.. predictor
1 1 0.21764767 0.1919140 1.1340897 0.2595235 (Intercept)
2 1 -0.36698898 0.3321875 -1.1047647 0.2719666 x
3 2 -0.04039422 0.1682335 -0.2401081 0.8107480 (Intercept)
4 2 0.06286456 0.3020321 0.2081387 0.8355526 x
The lm()
function above is an simple example. By the way, I imagine that your database has the columns as in the following form:
year state var1 var2 y...
In my point of view, you can to use the following code:
require(base)
library(base)
attach(data) # data = your data base
#state is your label for the states column
modell<-by(data, data$state, function(data) lm(y~I(1/var1)+I(1/var2)))
summary(modell)
The question seems to be about how to call regression functions with formulas which are modified inside a loop.
Here is how you can do it in (using diamonds dataset):
attach(ggplot2::diamonds)
strCols = names(ggplot2::diamonds)
formula <- list(); model <- list()
for (i in 1:1) {
formula[[i]] = paste0(strCols[7], " ~ ", strCols[7+i])
model[[i]] = glm(formula[[i]])
#then you can plot the results or anything else ...
png(filename = sprintf("diamonds_price=glm(%s).png", strCols[7+i]))
par(mfrow = c(2, 2))
plot(model[[i]])
dev.off()
}
aggregate
is not a right one; neither istapply
. – Zheyuan Li