I have some C# code that generates google maps. This codes looks at all the Points I need to plot on the map and then works out the Bounds of a rectangle to include those points. It then passes this bounds to the Google Maps API to set the zoom level appropriately to show all of the points on the map.
This code is working fine however I have a new requirement.
One of the points may have a precision associated with it. If this is the case then I draw a circle around the point with the radius set to the precision value. Again this works fine however my bounds checking is now not doing what I want it to do. I want to have the bounding box include the complete circle.
This requires an algorithm to take a point x and calculate the point y that would be z metres north of x and also z metres south of x.
Does anyone have this algorithm, preferably in C#. I did find a generic algorithm here but I appear to have not implemented this correctly as the answers I am getting are 1000s of km adrift.
This is the Generic example
Lat/lon given radial and distance
A point {lat,lon} is a distance d out on the tc radial from point 1 if:
lat=asin(sin(lat1)*cos(d)+cos(lat1)*sin(d)*cos(tc))
IF (cos(lat)=0)
lon=lon1 // endpoint a pole
ELSE
lon=mod(lon1-asin(sin(tc)*sin(d)/cos(lat))+pi,2*pi)-pi
ENDIF
And this is my C# translation.
// Extend a Point North/South by the specified distance
public static Point ExtendPoint(Point _pt, int _distance, int _bearing )
{
Decimal lat = 0.0;
Decimal lng = 0.0;
lat = Math.Asin(Math.Sin(_pt.Lat) * Math.Cos(_distance) + Math.Cos(_pt.Lat) *
Math.Sin(_distance) * Math.Cos(_bearing));
if (Math.Cos(lat) == 0)
{
lng = _pt.Lng; // endpoint a pole
}
else
{
lng = (
(_pt.Lng - Math.Asin(Math.Sin(_bearing) * Math.Sin(_distance) / Math.Cos(lat))
+ Math.PI) % (2 * Math.PI)) - Math.PI;
}
ret = new Point(lat,lng);
return ret;
}
I am calling this function with a bearing of 0 to calculate the new northerly position and a value of 180 to calculate the new southerly position.
Can anyone either see what I have done wrong or perhaps provide a known working algorithm?