Let's say we want to Voronoi-partition a rectangular surface with N points. The Voronoi tessellation results in N regions corresponding to the N points. For each region, we calculate its area and divide it by the total area of the whole surface - call these numbers a1, ..., aN. Their sum equals unity.
Suppose now we have a preset list of N numbers, b1, ..., bN, their sum equaling unity.
How can one find a choice (any) of the coordinates of the N points for Voronoi partitioning, such that a1==b1, a2==b2, ..., aN==bN?
Edit:
After a bit of thinking about this, maybe Voronoi partitioning isn't the best solution, the whole point being to come up with a random irregular division of the surface, such that the N regions have appropriate sizes. Voronoi seemed to me like the logical choice, but I may be mistaken.