I am currently working over a application of ANN, SVM and Linear Regression methods for prediction of fruit yield of a region based on meteorological factors (13 factors ) Total data set is: 36
While Implementing those methods on WEKA I am getting BAD results: Like in the case of MultilayerPreceptron my results are : (i divided the dataset with 28 for training and 8 for test ) === Run information ===
Scheme: weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a -G -R Relation: apr6_data Instances: 28 Attributes: 15
Time taken to build model: 3.69 seconds
=== Predictions on test set ===
inst# actual predicted error 1 2.551 2.36 -0.191 2 2.126 3.079 0.953 3 2.6 1.319 -1.281 4 1.901 3.539 1.638 5 2.146 3.635 1.489 6 2.533 2.917 0.384 7 2.54 2.744 0.204 8 2.82 3.473 0.653
=== Evaluation on test set === === Summary ===
Correlation coefficient -0.4415 Mean absolute error 0.8493 Root mean squared error 1.0065 Relative absolute error 144.2248 % Root relative squared error 153.5097 % Total Number of Instances 8
In case of SVM for regression : inst# actual predicted error 1 2.551 2.538 -0.013 2 2.126 2.568 0.442 3 2.6 2.335 -0.265 4 1.901 2.556 0.655 5 2.146 2.632 0.486 6 2.533 2.24 -0.293 7 2.54 2.766 0.226 8 2.82 3.175 0.355
=== Evaluation on test set === === Summary ===
Correlation coefficient 0.2888 Mean absolute error 0.3417 Root mean squared error 0.3862 Relative absolute error 58.0331 % Root relative squared error 58.9028 % Total Number of Instances 8
What can be the possible error in my application ? Please let me know ! Thanks