I am using gcc's implementation of openmp to try to parallelize a program. Basically the assignment is to add omp pragmas to obtain speedup on a program that finds amicable numbers.
The original serial program was given(shown below except for the 3 lines I added with comments at the end). We have to parallize first just the outer loop, then just the inner loop. The outer loop was easy and I get close to ideal speedup for a given number of processors. For the inner loop, I get much worse performance than the original serial program. Basically what I am trying to do is a reduction on the sum variable.
Looking at the cpu usage, I am only using ~30% per core. What could be causing this? Is the program continually making new threads everytime it hits the omp parallel for clause? Is there just so much more overhead in doing a barrier for the reduction? Or could it be memory access issue(eg cache thrashing)? From what I read with most implementations of openmp threads get reused overtime(eg pooled), so I am not so sure the first problem is what is wrong.
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include <omp.h>
#define numThread 2
int main(int argc, char* argv[]) {
int ser[29], end, i, j, a, limit, als;
als = atoi(argv[1]);
limit = atoi(argv[2]);
for (i = 2; i < limit; i++) {
ser[0] = i;
for (a = 1; a <= als; a++) {
ser[a] = 1;
int prev = ser[a-1];
if ((prev > i) || (a == 1)) {
end = sqrt(prev);
int sum = 0;//added this
#pragma omp parallel for reduction(+:sum) num_threads(numThread)//added this
for (j = 2; j <= end; j++) {
if (prev % j == 0) {
sum += j;
sum += prev / j;
}
}
ser[a] = sum + 1;//added this
}
}
if (ser[als] == i) {
printf("%d", i);
for (j = 1; j < als; j++) {
printf(", %d", ser[j]);
}
printf("\n");
}
}
}
-fopenmp
... – sehe