100
votes

We have a data frame from a CSV file. The data frame DF has columns that contain observed values and a column (VaR2) that contains the date at which a measurement has been taken. If the date was not recorded, the CSV file contains the value NA, for missing data.

Var1  Var2 
10   2010/01/01
20   NA
30   2010/03/01

We would like to use the subset command to define a new data frame new_DF such that it only contains rows that have an NA' value from the column (VaR2). In the example given, only Row 2 will be contained in the new DF.

The command

new_DF<-subset(DF,DF$Var2=="NA") 

does not work, the resulting data frame has no row entries.

If in the original CSV file the Value NA are exchanged with NULL, the same command produces the desired result: new_DF<-subset(DF,DF$Var2=="NULL").

How can I get this method working, if for the character string the value NA is provided in the original CSV file?

6

6 Answers

161
votes

Never use =='NA' to test for missing values. Use is.na() instead. This should do it:

new_DF <- DF[rowSums(is.na(DF)) > 0,]

or in case you want to check a particular column, you can also use

new_DF <- DF[is.na(DF$Var),]

In case you have NA character values, first run

Df[Df=='NA'] <- NA

to replace them with missing values.

40
votes

NA is a special value in R, do not mix up the NA value with the "NA" string. Depending on the way the data was imported, your "NA" and "NULL" cells may be of various type (the default behavior is to convert "NA" strings to NA values, and let "NULL" strings as is).

If using read.table() or read.csv(), you should consider the "na.strings" argument to do clean data import, and always work with real R NA values.

An example, working in both cases "NULL" and "NA" cells :

DF <- read.csv("file.csv", na.strings=c("NA", "NULL"))
new_DF <- subset(DF, is.na(DF$Var2))
40
votes

complete.cases gives TRUE when all values in a row are not NA

DF[!complete.cases(DF), ]
14
votes
new_data <- data %>% filter_all(any_vars(is.na(.))) 

This should create a new data frame (new_data) with only the missing values in it.

Works best to keep a track of values that you might later drop because they had some columns with missing observations (NA).

3
votes

Try changing this:

new_DF<-dplyr::filter(DF,is.na(Var2)) 
-1
votes

Prints all the rows with NA data:

tmp <- data.frame(c(1,2,3),c(4,NA,5));
tmp[round(which(is.na(tmp))/ncol(tmp)),]